Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting

被引:146
作者
Guo, Yanna [1 ,2 ,3 ]
Zhou, Xin [3 ]
Tang, Jing [4 ,5 ,6 ]
Tanaka, Shunsuke [3 ]
Kaneti, Yusuf Valentino [3 ]
Na, Jongbeom [3 ,5 ,6 ]
Jiang, Bo [3 ]
Yamauchi, Yusuke [3 ,5 ,6 ,7 ]
Bando, Yoshio [3 ,5 ,6 ]
Sugahara, Yoshiyuki [1 ,2 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[2] Waseda Univ, Kagami Mem Res Inst Mat Sci & Technol, Shinjuku Ku, Tokyo 1690051, Japan
[3] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] East China Normal Univ, Shanghai Key Lab Green Chem & Chem Proc, Sch Chem & Mol Engn, Shanghai 200062, Peoples R China
[5] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[6] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[7] Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China
基金
澳大利亚研究理事会;
关键词
Multiscale optimization; CoMoS heterostructure; Soft-template; Nanosized hollow structure; Fe-doping; Electrochemical water splitting; OXYGEN EVOLUTION; NICKEL SULFIDE; CARBON; GRAPHENE; CATALYST; MICELLES;
D O I
10.1016/j.nanoen.2020.104913
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow iron-doped Co-Mo sulfide (H-Fe-CoMoS) heterostructures with a highly efficient water-splitting catalytic ability were achieved by applying a multiscale optimization strategy. Morphological and compositional optimization on a macroscale achieved by assembling a bimetallic Co-Mo sulfide (CoMoS) heterostructure in a hollow-structured composite (H-CoMoS) gave the electrocatalyst an ability to conduct enhanced bifunctional activities for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Intrinsic electronic structure optimization on a microscale achieved by introducing a small amount of iron (Fe) into H-CoMoS (H-Fe-CoMoS) further improved its catalytic activity and stability. Electrochemical measurements revealed that this multiscale structural optimization promoted enhanced electrical conductivity and increased the number of electrochemical active sites on the H-Fe-CoMoS, leading to its remarkable electrocatalytic performance as a bifunctional catalyst for both HER and OER in alkaline media. The H-Fe-CoMoS showed overpotentials of 282 mV and 137 mV to achieve a current density of 10 mA cm(-2) for OER and HER, respectively, which are comparable to the performance of the benchmark OER catalyst RuO2 and HER catalyst Pt/C.
引用
收藏
页数:10
相关论文
共 62 条
[1]   Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting [J].
An, Li ;
Feng, Jianrui ;
Zhang, Yu ;
Wang, Rui ;
Liu, Hanwen ;
Wang, Gui-Chang ;
Cheng, Fangyi ;
Xi, Pinxian .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (01)
[2]   Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment [J].
Anantharaj, S. ;
Ede, S. R. ;
Karthick, K. ;
Sankar, S. Sam ;
Sangeetha, K. ;
Karthik, P. E. ;
Kundu, Subrata .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :744-771
[3]   Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes [J].
Dalle, Kristian E. ;
Warnan, Julien ;
Leung, Jane J. ;
Reuillard, Bertrand ;
Karmel, Isabell S. ;
Reisner, Erwin .
CHEMICAL REVIEWS, 2019, 119 (04) :2752-2875
[4]   In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER [J].
Das, Debanjan ;
Santra, Saswati ;
Nanda, Karuna Kar .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) :35025-35038
[5]   Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production [J].
Deng, Jiao ;
Li, Haobo ;
Wang, Suheng ;
Ding, Ding ;
Chen, Mingshu ;
Liu, Chuan ;
Tian, Zhongqun ;
Novoselov, K. S. ;
Ma, Chao ;
Deng, Dehui ;
Bao, Xinhe .
NATURE COMMUNICATIONS, 2017, 8
[6]   Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage [J].
Geng, Pengbiao ;
Zheng, Shasha ;
Tang, Hao ;
Zhu, Rongmei ;
Zhang, Li ;
Cao, Shuai ;
Xue, Huaiguo ;
Pang, Huan .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[7]   Mesoporous Iron-doped MoS2/CoMo2S4 Heterostructures through Organic-Metal Cooperative Interactions on Spherical Micelles for Electrochemical Water Splitting [J].
Guo, Yanna ;
Tang, Jing ;
Henzie, Joel ;
Jiang, Bo ;
Xia, Wei ;
Chen, Tao ;
Bando, Yoshio ;
Kang, Yong-Mook ;
Hossain, Shahriar A. ;
Sugahara, Yoshiyuki ;
Yamauchi, Yusuke .
ACS NANO, 2020, 14 (04) :4141-4152
[8]   Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting [J].
Guo, Yanna ;
Park, Teahoon ;
Yi, Jin Woo ;
Henzie, Joel ;
Kim, Jeonghun ;
Wang, Zhongli ;
Jiang, Bo ;
Bando, Yoshio ;
Sugahara, Yoshiyuki ;
Tang, Jing ;
Yamauchi, Yusuke .
ADVANCED MATERIALS, 2019, 31 (17)
[9]   Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting [J].
Guo, Yanna ;
Tang, Jing ;
Wang, Zhongli ;
Sugahara, Yoshiyuki ;
Yamauchi, Yusuke .
SMALL, 2018, 14 (44)
[10]   Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting [J].
Guo, Yanna ;
Tang, Jing ;
Wang, Zhongli ;
Kang, Yong-Mook ;
Bando, Yoshio ;
Yamauchi, Yusuke .
NANO ENERGY, 2018, 47 :494-502