Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae

被引:63
作者
Tippmann, Stefan [1 ,2 ]
Anfelt, Josefine [3 ]
David, Florian [1 ,2 ]
Rand, Jacqueline M. [1 ,4 ]
Siewers, Verena [1 ,2 ]
Uhlen, Mathias [3 ,5 ]
Nielsen, Jens [1 ,2 ,5 ]
Hudson, Elton P. [3 ]
机构
[1] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Novo Nordisk Fdn, Ctr Biosustainabil, SE-41296 Gothenburg, Sweden
[3] Royal Inst Technol KTH, Sch Biotechnol, Div Prote & Nanobiotechnol, Sci Life Lab, SE-17121 Stockholm, Sweden
[4] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[5] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2970 Horsholm, Denmark
来源
ACS SYNTHETIC BIOLOGY | 2017年 / 6卷 / 01期
基金
瑞典研究理事会;
关键词
affibodies; isoprenoids; biofuels; PHB; yeast; metabolic engineering; ESCHERICHIA-COLI; SPATIAL-ORGANIZATION; RALSTONIA-EUTROPHA; GENE-EXPRESSION; COPY NUMBER; PROTEIN-A; BINDING; FARNESENE; ENZYMES; PURIFICATION;
D O I
10.1021/acssynbio.6b00109
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be colocalized through attachment to a synthetic scaffold via noncovalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for colocalization of farnesyl diphosphate synthase and farnesene synthase in S. cerevisiae. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose YSF, could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in E. coli. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 56 条
  • [1] Contour length and refolding rate of a small protein controlled by engineered disulfide bonds
    Ainavarapu, Rama Koti
    Brujic, Jasna
    Huang, Hector H.
    Wiita, Arun P.
    Lu, Hui
    Li, Lewyn
    Walther, Kirstin A.
    Carrion-Vazquez, Mariano
    Li, Hongbin
    Fernandez, Julio M.
    [J]. BIOPHYSICAL JOURNAL, 2007, 92 (01) : 225 - 233
  • [2] Diversion of Flux toward Sesquiterpene Production in Saccharomyces cerevisiae by Fusion of Host and Heterologous Enzymes
    Albertsen, Line
    Chen, Yun
    Bach, Lars S.
    Rattleff, Stig
    Maury, Jerome
    Brix, Susanne
    Nielsen, Jens
    Mortensen, Uffe H.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (03) : 1033 - 1040
  • [3] Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production
    Anfelt, Josefine
    Kaczmarzyk, Danuta
    Shabestary, Kiyan
    Renberg, Bjorn
    Rockberg, Johan
    Nielsen, Jens
    Uhlen, Mathias
    Hudson, Elton P.
    [J]. MICROBIAL CELL FACTORIES, 2015, 14
  • [4] The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters
    Bar-Even, Arren
    Noor, Elad
    Savir, Yonatan
    Liebermeister, Wolfram
    Davidi, Dan
    Tawfik, Dan S.
    Milo, Ron
    [J]. BIOCHEMISTRY, 2011, 50 (21) : 4402 - 4410
  • [5] Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    Bond-Watts, Brooks B.
    Bellerose, Robert J.
    Chang, Michelle C. Y.
    [J]. NATURE CHEMICAL BIOLOGY, 2011, 7 (04) : 222 - 227
  • [6] Enzyme clustering accelerates processing of intermediates through metabolic channeling
    Castellana, Michele
    Wilson, Maxwell Z.
    Xu, Yifan
    Joshi, Preeti
    Cristea, Ileana M.
    Rabinowitz, Joshua D.
    Gitai, Zemer
    Wingreen, Ned S.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1011 - +
  • [7] Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy
    Conrado, Robert J.
    Varner, Jeffrey D.
    DeLisa, Matthew P.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) : 492 - 499
  • [8] One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    Datsenko, KA
    Wanner, BL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) : 6640 - 6645
  • [9] Synthetic protein scaffolds provide modular control over metabolic flux
    Dueber, John E.
    Wu, Gabriel C.
    Malmirchegini, G. Reza
    Moon, Tae Seok
    Petzold, Christopher J.
    Ullal, Adeeti V.
    Prather, Kristala L. J.
    Keasling, Jay D.
    [J]. NATURE BIOTECHNOLOGY, 2009, 27 (08) : 753 - U107
  • [10] EBERHARDT NL, 1975, J BIOL CHEM, V250, P863