Chlorophyll-carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis

被引:89
|
作者
Park, Soomin [1 ,2 ,3 ]
Steen, Collin J. [1 ,2 ,3 ]
Lyska, Dagmar [2 ,4 ]
Fischer, Alexandra L. [1 ,2 ,3 ]
Endelman, Benjamin [2 ,4 ,5 ]
Iwai, Masakazu [2 ,4 ,5 ]
Niyogi, Krishna K. [2 ,4 ,5 ]
Fleming, Graham R. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
[3] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
关键词
photosynthesis; nonphotochemical quenching; Nannochloropsis; charge transfer; excitation energy transfer; LIGHT-HARVESTING COMPLEX; CATION FORMATION; TRANSFER STATE; ZEAXANTHIN; PROTEIN; PHOTOPROTECTION; DYNAMICS; LUTEIN; IDENTIFICATION; PRODUCTIVITY;
D O I
10.1073/pnas.1819011116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonphotochemical quenching (NPQ) is a proxy for photoprotective thermal dissipation processes that regulate photosynthetic light harvesting. The identification of NPQ mechanisms and their molecular or physiological triggering factors under in vivo conditions is a matter of controversy. Here, to investigate chlorophyll (Chl)-zeaxanthin (Zea) excitation energy transfer (EET) and charge transfer (CT) as possible NPQ mechanisms, we performed transient absorption (TA) spectroscopy on live cells of the microalga Nannochloropsis oceanica. We obtained evidence for the operation of both EET and CT quenching by observing spectral features associated with the Zea S-1 and Zea(center dot+) excited-state absorption (ESA) signals, respectively, after Chl excitation. Knockout mutants for genes encoding either violaxanthin deepoxidase or LHCX1 proteins exhibited strongly inhibited NPQ capabilities and lacked detectable Zea S1 and Zea(center dot+) ESA signals in vivo, which strongly suggests that the accumulation of Zea and active LHCX1 is essential for both EET and CT quenching in N. oceanica.
引用
收藏
页码:3385 / 3390
页数:6
相关论文
共 50 条
  • [21] Synthesis of chlorophyll-BODIPY conjugates and their intramolecular excitation energy transfer
    Mori, Yuna
    Nakamura, Yugo
    Yasui, Mizuki
    Tamiaki, Hitoshi
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2024, 28 (01) : 1 - 10
  • [22] Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - A theoretical perspective
    Wormit, Michael
    Harbach, Philipp H. P.
    Mewes, Jan M.
    Amarie, Sergiu
    Wachtveitl, Josef
    Dreuw, Andreas
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (06): : 738 - 746
  • [23] Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII
    Gray, Callum
    Wei, Tiejun
    Polivka, Tomas
    Daskalakis, Vangelis
    Duffy, Christopher D. P.
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [24] Linker-controlled energy and charge transfer within chlorophyll trefoils
    Kelley, Richard F.
    Tauber, Michael J.
    Wasielewski, Michael R.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (47) : 7979 - 7982
  • [25] Far-Red Absorbing LHCII Incorporating Chlorophyll d Preserves Photoprotective Carotenoid Triplet-Triplet Energy Transfer Pathways
    Cianfarani, Niccolo
    Calcinoni, Andrea
    Agostini, Alessandro
    Elias, Eduard
    Bortolus, Marco
    Croce, Roberta
    Carbonera, Donatella
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (07): : 1720 - 1728
  • [26] Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs
    Son, Minjung
    Pinnola, Alberta
    Gordon, Samuel C.
    Bassi, Roberto
    Schlau-Cohen, Gabriela S.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Structure and Energy Transfer in Photosystems of Oxygenic Photosynthesis
    Nelson, Nathan
    Junge, Wolfgang
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 : 659 - 683
  • [28] Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms
    Papagiannakis, E
    van Stokkum, IHM
    Fey, H
    Büchel, C
    van Grondelle, R
    PHOTOSYNTHESIS RESEARCH, 2005, 86 (1-2) : 241 - 250
  • [29] Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein
    Ghosh, Soumen
    Bishop, Michael M.
    Roscioli, Jerome D.
    LaFountain, Amy M.
    Frank, Harry A.
    Beck, Warren F.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (02): : 463 - 469
  • [30] Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSRI. protein from Physcomitrella patens
    Pinnola, Alberta
    Staleva-Musto, Hristina
    Capaldi, Stefano
    Ballottari, Matteo
    Bassi, Roberto
    Polivka, Tomas
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (12): : 1870 - 1878