Graphics processing unit based ultrahigh speed real-time multidimensional Fourier domain optical coherence tomography

被引:0
作者
Zhang, Kang [1 ]
Kang, Jin U. [2 ]
机构
[1] GE Global Res, 1 Res Circle, Niskayuna, NY 12309 USA
[2] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
来源
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVI | 2012年 / 8213卷
关键词
Optical coherence tomography; graphics processing unit; parallel computing; MODE-LOCKED LASER; FULL-RANGE; DISPERSION COMPENSATION; MEGAHERTZ OCT; SWEPT LASER; AXIAL SCANS; 2ND; MICROSURGERY; RESOLUTION; TRANSFORM;
D O I
10.1117/12.905213
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we systematically presented a series of graphics processing unit (GPU) based data processing methods for ultrahigh speed, real-time Fourier Domain optical coherence tomography (FD-OCT): GPU based algorithms including high-speed linear/cubic interpolation, non-uniform fast Fourier transform (NUFFT), numerical dispersion compensation, and multi-GPU implementation were developed to improve the image quality and stability of the system. Full-range complex-conjugate-free FD-OCT was also implemented on the GPU architecture to double the imaging range and to improve SNR. The maximum processing speed of > 3.0 Giga-Voxel/second (> 6.0 Mega-A-scan/second of 1024-pixel FD-OCT) was achieved using NVIDIA's latest GPU modules. The GPU-based volume rendering enabled real-time 4D (3D+ time) FD-OCT imaging, and a 5 volume/second 4D FD-OCT system was demonstrated. These GPU technologies were highly effective in circumventing the imaging reconstruction and visualization bottlenecks exist among current ultra-high speed FD-OCT systems and could significantly facilitate the interventional OCT imaging.
引用
收藏
页数:13
相关论文
共 28 条
  • [1] Three-dimensional endomicroscopy using optical coherence tomography
    Adler, Desmond C.
    Chen, Yu
    Huber, Robert
    Schmitt, Joseph
    Connolly, James
    Fujimoto, James G.
    [J]. NATURE PHOTONICS, 2007, 1 (12) : 709 - 716
  • [2] [Anonymous], 2011, NVIDIA CUDA CUFFT LI
  • [3] [Anonymous], J BIOMED OPT
  • [4] Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography
    Boppart, SA
    Bouma, BE
    Pitris, C
    Southern, JF
    Brezinski, ME
    Fujimoto, JG
    [J]. RADIOLOGY, 1998, 208 (01) : 81 - 86
  • [5] Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging
    Desjardins, Adrien E.
    Vakoc, Benjamin J.
    Suter, Melissa J.
    Yun, Seok-Hyun
    Tearney, Guillermo J.
    Bouma, Brett E.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) : 1468 - 1472
  • [6] K-space linear Fourier domain mode locked laser and applications for optical coherence tomography
    Eigenwillig, Christoph M.
    Biedermann, Benjamin R.
    Palte, Gesa
    Huber, Robert
    [J]. OPTICS EXPRESS, 2008, 16 (12) : 8916 - 8937
  • [7] Accelerating the nonuniform fast Fourier transform
    Greengard, L
    Lee, JY
    [J]. SIAM REVIEW, 2004, 46 (03) : 443 - 454
  • [8] Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer
    Hu, Zhilin
    Rollins, Andrew M.
    [J]. OPTICS LETTERS, 2007, 32 (24) : 3525 - 3527
  • [9] OPTICAL COHERENCE TOMOGRAPHY
    HUANG, D
    SWANSON, EA
    LIN, CP
    SCHUMAN, JS
    STINSON, WG
    CHANG, W
    HEE, MR
    FLOTTE, T
    GREGORY, K
    PULIAFITO, CA
    FUJIMOTO, JG
    [J]. SCIENCE, 1991, 254 (5035) : 1178 - 1181
  • [10] Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s
    Huber, Robert
    Adler, Desmond C.
    Fujimoto, James G.
    [J]. OPTICS LETTERS, 2006, 31 (20) : 2975 - 2977