Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations

被引:57
作者
Avila-Rios, Santiago [1 ]
Parkin, Neil [2 ]
Swanstrom, Ronald [3 ]
Paredes, Roger [4 ]
Shafer, Robert [5 ]
Ji, Hezhao [6 ,7 ]
Kantor, Rami [8 ]
机构
[1] Natl Inst Resp Dis, Ctr Res Infect Dis, Calzada Tlalpan 4502,Col Secc 16, Mexico City 14080, DF, Mexico
[2] Data First Consulting Inc, Sebastopol, CA 95472 USA
[3] Univ North Carolina Chapel Hill, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[4] IrsiCaixa AIDS Res Inst, Badalona 08916, Catalonia, Spain
[5] Stanford Univ, Sch Med, Div Infect Dis, Stanford, CA 94305 USA
[6] Publ Hlth Agcy Canada, Natl HIV & Retrovirol Labs, JC Wilt Infect Dis Res Ctr, Winnipeg, MB R3E 3R2, Canada
[7] Univ Manitoba, Dept Med Microbiol & Infect Dis, Winnipeg, MB R3E 0J9, Canada
[8] Brown Univ, Div Infect Dis, Alpert Med Sch, Providence, RI 02906 USA
来源
VIRUSES-BASEL | 2020年 / 12卷 / 06期
关键词
HIV drug resistance; next-generation sequencing; low; medium-income countries; implementation; low-abundance variants; BLOOD SPOT SPECIMENS; ANTIRETROVIRAL THERAPY; REVERSE-TRANSCRIPTASE; MINORITY VARIANTS; MUTATIONS; SURVEILLANCE; PERFORMANCE; FAILURE; PLASMA; IMPACT;
D O I
10.3390/v12060617
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Higher accessibility and decreasing costs of next generation sequencing (NGS), availability of commercial kits, and development of dedicated analysis pipelines, have allowed an increasing number of laboratories to adopt this technology for HIV drug resistance (HIVDR) genotyping. Conventional HIVDR genotyping is traditionally carried out using population-based Sanger sequencing, which has a limited capacity for reliable detection of variants present at intra-host frequencies below a threshold of approximately 20%. NGS has the potential to improve sensitivity and quantitatively identify low-abundance variants, improving efficiency and lowering costs. However, some challenges exist for the standardization and quality assurance of NGS-based HIVDR genotyping. In this paper, we highlight considerations of these challenges as related to laboratory, clinical, and implementation of NGS for HIV drug resistance testing. Several sources of variation and bias occur in each step of the general NGS workflow, i.e., starting material, sample type, PCR amplification, library preparation method, instrument and sequencing chemistry-inherent errors, and data analysis options and limitations. Additionally, adoption of NGS-based HIVDR genotyping, especially for clinical care, poses pressing challenges, especially for resource-poor settings, including infrastructure and equipment requirements and cost, logistic and supply chains, instrument service availability, personnel training, validated laboratory protocols, and standardized analysis outputs. The establishment of external quality assessment programs may help to address some of these challenges and is needed to proceed with NGS-based HIVDR genotyping adoption.
引用
收藏
页数:15
相关论文
共 53 条
[1]   Stability of HIV-1 Nucleic Acids in Dried Blood Spot Samples for HIV-1 Drug Resistance Genotyping [J].
Aitken, Susan C. ;
Wallis, Carole L. ;
Stevens, Wendy ;
de Wit, Tobias Rinke ;
Schuurman, Rob .
PLOS ONE, 2015, 10 (07)
[2]   RNA and DNA Sanger sequencing versus next-generation sequencing for HIV-1 drug resistance testing in treatment-naive patients [J].
Alidjinou, E. K. ;
Deldalle, J. ;
Hallaert, C. ;
Robineau, O. ;
Ajana, F. ;
Choisy, P. ;
Hober, D. ;
Bocket, L. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2017, 72 (10) :2823-2830
[3]   Routine drug resistance testing in HIV-1 proviral DNA, using an automated next-generation sequencing assay [J].
Alidjinou, Enagnon Kazali ;
Coulon, Pauline ;
Hallaert, Christophe ;
Robineau, Olivier ;
Meybeck, Agnes ;
Huleux, Thomas ;
Ajana, Faiza ;
Hober, Didier ;
Bocket, Laurence .
JOURNAL OF CLINICAL VIROLOGY, 2019, 121
[4]   Routine drug resistance testing in proviral HIV-1 DNA: Prevalence of stop codons and hypermutation, and associated factors [J].
Alidjinou, Enagnon Kazali ;
Deldalle, Josephine ;
Robineau, Olivier ;
Hallaert, Christophe ;
Meybeck, Agnes ;
Huleux, Thomas ;
Ajana, Faiza ;
Hobert, Didier ;
Bocket, Laurence .
JOURNAL OF MEDICAL VIROLOGY, 2019, 91 (09) :1684-1687
[5]   Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: a nationally representative 2015 WHO survey [J].
Avila-Rios, Santiago ;
Garcia-Morales, Claudia ;
Matias-Florentino, Margarita ;
Romero-Mora, Karla A. ;
Tapia-Trejo, Daniela ;
Quiroz-Morales, Veronica S. ;
Reyes-Gopar, Helena ;
Ji, Hezhao ;
Sandstrom, Paul ;
Casillas-Rodriguez, Jesus ;
Sierra-Madero, Juan ;
Leon-Juarez, Eddie A. ;
Valenzuela-Lara, Marisol ;
Magis-Rodriguez, Carlos ;
Uribe-Zuniga, Patricia ;
Reyes-Teran, Gustavo .
LANCET HIV, 2016, 3 (12) :E579-E591
[6]  
Bertagnolio S, 2007, ANTIVIR THER, V12, P107
[7]   Promises and pitfalls of Illumina sequencing for HIV resistance genotyping [J].
Brumme, Chanson J. ;
Poon, Art F. Y. .
VIRUS RESEARCH, 2017, 239 :97-105
[8]   Development and optimization of an internally controlled dried blood spot assay for surveillance of human immunodeficiency virus type-1 drug resistance [J].
Buckton, Andrew J. ;
Bissett, Sara L. ;
Myers, Richard E. ;
Beddows, Simon ;
Edwards, Simon ;
Cane, Patricia A. ;
Pillay, Deenan .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2008, 62 (06) :1191-1198
[9]   Deep sequencing for HIV-1 clinical management [J].
Casadella, Maria ;
Paredes, Roger .
VIRUS RESEARCH, 2017, 239 :69-81
[10]   DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification [J].
Chen, Lixin ;
Liu, Pingfang ;
Evans, Thomas C ;
Ettwiller, Laurence M. .
SCIENCE, 2017, 355 (6326) :752-+