MetaSearch: Incremental Product Search via Deep Meta-Learning

被引:58
作者
Wang, Qi [1 ,2 ]
Liu, Xinchen [3 ]
Liu, Wu [3 ]
Liu, An-An [4 ]
Liu, Wenyin [1 ]
Mei, Tao [3 ]
机构
[1] Guangdong Univ Technol, Dept Comp, Guangzhou 510006, Peoples R China
[2] Hasselt Univ, Fac Engn Technol, B-3590 Hasselt, Belgium
[3] JD com, AI Res, Beijing 100101, Peoples R China
[4] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Product search; Few-shot learning; Incremental search; Meta-learning; Multipooling; IMAGE; MODEL;
D O I
10.1109/TIP.2020.3004249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advancement of image processing and computer vision technology, content-based product search is applied in a wide variety of common tasks, such as online shopping, automatic checkout systems, and intelligent logistics. Given a product image as a query, existing product search systems mainly perform the retrieval process using predefined databases with fixed product categories. However, real-world applications often require inserting new categories or updating existing products in the product database. When using existing product search methods, the image feature extraction models must be retrained and database indexes must be rebuilt to accommodate the updated data, and these operations incur high costs for data annotation and training time. To this end, we propose a few-shot incremental product search framework with meta-learning, which requires very few annotated images and has a reasonable training time. In particular, our framework contains a multipooling-based product feature extractor that learns a discriminative representation for each product, and we also design a meta-learning-based feature adapter to guarantee the robustness of the few-shot features. Furthermore, when expanding new categories in batches during a product search, we reconstruct the few-shot features by using an incremental weight combiner to accommodate the incremental search task. Through extensive experiments, we demonstrate that the proposed framework achieves excellent performance for new products while still guaranteeing the high search accuracy of the base categories after gradually expanding new product categories without forgetting.
引用
收藏
页码:7549 / 7564
页数:16
相关论文
共 56 条
[1]  
[Anonymous], 2016, ICLR
[2]  
Arandjelovic R, 2018, IEEE T PATTERN ANAL, V40, P1437, DOI [10.1109/TPAMI.2017.2711011, 10.1109/CVPR.2016.572]
[3]   Aggregating Deep Convolutional Features for Image Retrieval [J].
Babenko, Artem ;
Lempitsky, Victor .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1269-1277
[4]   Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence [J].
Chaudhry, Arslan ;
Dokania, Puneet K. ;
Ajanthan, Thalaiyasingam ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 :556-572
[5]   Total recall: Automatic query expansion with a generative feature model for object retrieval [J].
Chum, Ondrej ;
Philbin, James ;
Sivic, Josef ;
Isard, Michael ;
Zisserman, Andrew .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :496-+
[6]   Scalable Deep Hashing for Large-Scale Social Image Retrieval [J].
Cui, Hui ;
Zhu, Lei ;
Li, Jingjing ;
Yang, Yang ;
Nie, Liqiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :1271-1284
[7]   A Two-Stage Approach to Few-Shot Learning for Image Recognition [J].
Das, Debasmit ;
Lee, C. S. George .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :3336-3350
[8]  
Das D, 2019, PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON HARDWARE ORIENTED SECURITY AND TRUST (HOST), P11, DOI 10.1109/HST.2019.8740839
[9]   Learning without Memorizing [J].
Dhar, Prithviraj ;
Singh, Rajat Vikram ;
Peng, Kuan-Chuan ;
Wu, Ziyan ;
Chellappa, Rama .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5133-5141
[10]   Fast Parameter Adaptation for Few-shot Image Captioning and Visual Question Answering [J].
Dong, Xuanyi ;
Zhu, Linchao ;
Zhang, De ;
Yang, Yi ;
Wu, Fei .
PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, :54-62