Discrete Lagrangian reduction, discrete Euler-Poincare equations, and semidirect products

被引:45
作者
Bobenko, AI [1 ]
Suris, YB [1 ]
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
关键词
Lagrangian systems on Lie groups; difference equations; Lagrangian reduction; discretization;
D O I
10.1023/A:1007654605901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discrete version of Lagrangian reduction is developed within the context of discrete time Lagrangian systems on G x G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. Within this context, the reduction of the discrete Euler-Lagrange equations is shown to lead to the so-called discrete Euler-Poincare equations. A constrained variational principle is derived. The Legendre transformation of the discrete Euler-Poincare equations leads to discrete Hamiltonian (Lie-Poisson) systems on a dual space to a semiproduct Lie algebra.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 15 条
  • [1] Abraham R., 1978, Foundations of mechanics
  • [2] Arnold V. I., 1978, Mathematical methods of classical mechanics
  • [3] Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top
    Bobenko, AI
    Suris, YB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) : 147 - 188
  • [4] CENDRA H, 1999, IN PRESS AM MATH SOC, V2
  • [5] Cushman R. H., 1997, GLOBAL ASPECTS CLASS
  • [6] HOLM DD, 1998, IN PRESS ADV MATH
  • [7] Marsden J., 1994, INTRO MECH SYMMETRY
  • [8] Marsden J. E., 1984, CONT MATH, V28
  • [9] Marsden J.E., 1993, FIELDS I COMM, V1, P139, DOI DOI 10.1090/FIC/001/07
  • [10] Multisymplectic geometry, variational integrators, and nonlinear PDEs
    Marsden, JE
    Patrick, GW
    Shkoller, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) : 351 - 395