Discrete Lagrangian reduction, discrete Euler-Poincare equations, and semidirect products

被引:46
作者
Bobenko, AI [1 ]
Suris, YB [1 ]
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
关键词
Lagrangian systems on Lie groups; difference equations; Lagrangian reduction; discretization;
D O I
10.1023/A:1007654605901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discrete version of Lagrangian reduction is developed within the context of discrete time Lagrangian systems on G x G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. Within this context, the reduction of the discrete Euler-Lagrange equations is shown to lead to the so-called discrete Euler-Poincare equations. A constrained variational principle is derived. The Legendre transformation of the discrete Euler-Poincare equations leads to discrete Hamiltonian (Lie-Poisson) systems on a dual space to a semiproduct Lie algebra.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 15 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[3]   Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top [J].
Bobenko, AI ;
Suris, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) :147-188
[4]  
CENDRA H, 1999, IN PRESS AM MATH SOC, V2
[5]  
Cushman R. H., 1997, GLOBAL ASPECTS CLASS
[6]  
HOLM DD, 1998, IN PRESS ADV MATH
[7]  
Marsden J., 1994, INTRO MECH SYMMETRY
[8]  
Marsden J. E., 1984, CONT MATH, V28
[9]  
Marsden J.E., 1993, FIELDS I COMM, V1, P139, DOI DOI 10.1090/FIC/001/07
[10]   Multisymplectic geometry, variational integrators, and nonlinear PDEs [J].
Marsden, JE ;
Patrick, GW ;
Shkoller, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) :351-395