Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference

被引:41
作者
Campbell, Kieran R. [1 ,2 ]
Yau, Christopher [2 ,3 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford, England
[2] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[3] Univ Oxford, Dept Stat, Oxford, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
CELL RNA-SEQ; SINGLE; DYNAMICS;
D O I
10.1371/journal.pcbi.1005212
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a 'pseudotime' where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference.
引用
收藏
页数:20
相关论文
共 39 条
  • [1] viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    Amir, El-ad David
    Davis, Kara L.
    Tadmor, Michelle D.
    Simonds, Erin F.
    Levine, Jacob H.
    Bendall, Sean C.
    Shenfeld, Daniel K.
    Krishnaswamy, Smita
    Nolan, Garry P.
    Pe'er, Dana
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (06) : 545 - +
  • [2] [Anonymous], 2016, NUCL ACIDS RES, DOI DOI 10.1093/NAR/GKW430
  • [3] [Anonymous], 2005, PROC INTERCONF MACH, DOI DOI 10.1145/1102351.1102413
  • [4] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [5] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [6] Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear
    Burns, Joseph C.
    Kelly, Michael C.
    Hoa, Michael
    Morell, Robert J.
    Kelley, Matthew W.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [7] Campbell Kieran, 2015, bioRxiv
  • [8] Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization
    Gelman, Andrew
    Lee, Daniel
    Guo, Jiqiang
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2015, 40 (05) : 530 - 543
  • [9] Extracting dynamics from static cancer expression data
    Gupta, Anupam
    Bar-Joseph, Ziv
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2008, 5 (02) : 172 - 182
  • [10] Diffusion pseudotime robustly reconstructs lineage branching
    Haghverdi, Laleh
    Buettner, Maren
    Wolf, F. Alexander
    Buettner, Florian
    Theis, Fabian J.
    [J]. NATURE METHODS, 2016, 13 (10) : 845 - +