Experimental Study on the Combustion Characteristics of Polyurethane Under High Pressure and Low Oxygen Environment

被引:1
作者
Ma, Yifei [1 ]
Du, Wenfeng [2 ]
Wu, Bing [1 ]
Wu, Haiyang [3 ]
Huang, Qiming [1 ]
机构
[1] China Univ Min & Technol Beijing, Coll Resources & Safety Engn, Beijing 100083, Peoples R China
[2] Chinese Peoples Armed Police Force Acad, Dept Fire Engn, Langfang 065000, Peoples R China
[3] Xiamen Univ, Coll Mat, Xiamen 361000, Peoples R China
关键词
Combustion characteristics; Polyurethane; High pressure and low oxygen; Closed coal mine; FLAME SPREAD;
D O I
10.1007/s10694-018-00812-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Closing the coal mine and injecting nitrogen, as a common fire fighting method, will form a high pressure and low oxygen environment in the closed coal mine. To investigate the fire risk of the rigid polyurethane (PU) foam under this environment, a series of experiments were carried out in the self-designed device. In the experiments, the oxygen concentration (pressure) changed from 21% o0: 101MPathorn to 16% o0: 133MPathorn, and the material thickness varied between 3 cm; 4 cm and 5 cm. PU's flame speed, flame height and gas-phase temperature were obtained and analyzed from different aspects. The experimental results are as follows: (1) The effect of oxygen concentration reduction was stronger than that of pressure increase on flame speed. The critical heat flux of vertical flame propagation and the volume of carbon skeleton structure, which were influenced by the material thickness, affected the flame speed. (2) Under the influence of oxygen concentration and buoyancy of mixed gas in closed area, the normalized flame height showed a unique variation rule. (3) The final absolute pressure in the experimental equipment could be compared with the initial pressure to show the insufficiency of combustion. The maximum gas-phase temperature at 3 cm above the fuel surface showed different variation patterns, when the average optical density of soot particles were on the two sides with 200 (dimensionless number). The results illustrate that in the high pressure and low oxygen environment, reducing the oxygen concentration rapidly is the key to extinguishing the coal mine fire, although the increase in pressure will enhance the intensity of combustion.
引用
收藏
页码:915 / 934
页数:20
相关论文
共 26 条
  • [1] BUOYANCY EFFECTS ON FLAMES SPREADING DOWN THERMALLY THIN FUELS
    ALTENKIRCH, RA
    EICHHORN, R
    SHANG, PC
    [J]. COMBUSTION AND FLAME, 1980, 37 (01) : 71 - 83
  • [2] Chao L, 2012, THESIS
  • [3] de Ris J., 1979, P COMBUST INST, V17, P1003, DOI [10.1016/S0082-0784(79)80097-1, DOI 10.1016/S0082-0784(79)80097-1]
  • [4] deRis J.N., 1969, Proceedings of 12th Symp. (Int.) on Combustion, P241, DOI DOI 10.1016/S0082-0784(69)80407-8
  • [5] NEAR LIMIT FLAME SPREAD OVER THICK FUELS IN A CONCURRENT FORCED FLOW
    DIBLASI, C
    CRESCITELLI, S
    RUSSO, G
    [J]. COMBUSTION AND FLAME, 1988, 72 (02) : 205 - 215
  • [6] DiNenno P. J., 2008, SFPE Handbook of Fire Protection Engineering
  • [7] Dong J, 2009, ANAL HARM PREVENTIVE
  • [8] Effect of ambient pressure and radiation reabsorption of atmosphere on the flame spreading over thermally thin combustibles in microgravity
    Du, WF
    Hu, WR
    [J]. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2003, 46 (04): : 381 - 390
  • [9] Fan WD, 2005, J FUEL CHEM TECHNOL, V74, P127
  • [10] NEAR-LIMIT FLAME SPREAD OVER PAPER SAMPLES
    FREY, AE
    TIEN, JS
    [J]. COMBUSTION AND FLAME, 1976, 26 (02) : 257 - 267