Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries

被引:264
作者
Sun, Yang-Kook [1 ,4 ]
Lee, Dong-Ju [1 ]
Lee, Yun Jung [1 ]
Chen, Zonghai [2 ]
Myung, Seung-Taek [3 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[4] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
lithium ion battery; cathode; layered oxide; cobalt-free; nickel rich; manganese substitution; POSITIVE ELECTRODE MATERIAL; ELECTROCHEMICAL PROPERTIES; INSERTION MATERIAL; COPRECIPITATION; PERFORMANCE; LINI1/2MN1/2O2; DIFFRACTION; BEHAVIOR; CELLS; OPTIMIZATION;
D O I
10.1021/am403684z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a feasibility of Co-free Ni-rich Li(Ni1-xMnx)O-2 layer compound. Li(Ni1-xMnx)O-2 (0.1 <= x <= 0.5) have been synthesized by a coprecipitation method. Rietveld refinement of X-ray diffraction and microscopic studies reveal dense and spherical secondary particles of highly crystalline phase with low cation mixing over the whole compositions, implying successful optimization of synthetic conditions. Electrochemical test results indicated that the Co-free materials delivered high capacity with excellent capacity retention and reasonable rate capability. In particular, Li(Ni0.9Mn0.1)O-2, which possesses the lowest cation mixing in the Li layers among samples, exhibited exceptionally high rate capacity (approximately 149 mAh g(-1) at 10 C rate) at 25 degrees C and high discharge capacity upon cycling under a severe condition, in the voltage range of 2.7-4.5 V at 55 degrees C. The cation mixing in Li(Ni0.9Mn0.1)O-2 increased slightly even after the extensive cycling at the elevated temperature, which is ascribed to the structural integrity induced from the optimized synthetic condition using the coprecipitation.
引用
收藏
页码:11434 / 11440
页数:7
相关论文
共 44 条
[1]   Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells [J].
Abraham, DP ;
Twesten, RD ;
Balasubramanian, M ;
Petrov, I ;
McBreen, J ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) :620-625
[2]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[3]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[4]   LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS [J].
BROUSSELY, M ;
PERTON, F ;
LABAT, J ;
STANIEWICZ, RJ ;
ROMERO, A .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :209-216
[5]   Preparation by a 'chimie douce' route and characterization of LiNizMn1-zO2(0.5<=z<=1) cathode materials [J].
Caurant, D ;
Baffier, N ;
Bianchi, V ;
Gregoire, G ;
Bach, S .
JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (07) :1149-1155
[6]   RECHARGEABLE LINIO2 CARBON CELLS [J].
DAHN, JR ;
VONSACKEN, U ;
JUZKOW, MW ;
ALJANABY, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2207-2211
[7]   Effects of manganese substitution for nickel on the structural and electrochemical properties of LiNiO2 [J].
Guilmard, M ;
Croguennec, L ;
Delmas, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1287-A1293
[8]   Neutron diffraction study of LiNi0.8Mn0.2O2 [J].
Hirano, A ;
Kanno, R ;
Kawamoto, Y ;
Nitta, Y ;
Okamura, K ;
Kamiyama, T ;
Izumi, F .
JOURNAL OF SOLID STATE CHEMISTRY, 1997, 134 (01) :1-4
[9]   Influence of Mn content on the morphology and electrochemical performance of LiNi1-x-yCoxMnyO2 cathode materials [J].
Hwang, BJ ;
Tsai, YW ;
Chen, CH ;
Santhanam, R .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (08) :1962-1968
[10]   Particle size effect of Ni-rich cathode materials on lithium ion battery performance [J].
Hwang, Ilkyu ;
Lee, Chul Wee ;
Kim, Jae Chang ;
Yoon, Songhun .
MATERIALS RESEARCH BULLETIN, 2012, 47 (01) :73-78