The parameterless self-organizing map algorithm

被引:85
作者
Berglund, E [1 ]
Sitte, J
机构
[1] Univ Queensland, Div Complex & Intelligent Syst, St Lucia, Qld 4072, Australia
[2] Queensland Univ Technol, Smart Devices Lab, Brisbane, Qld 4001, Australia
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2006年 / 17卷 / 02期
关键词
self-organizing feature maps;
D O I
10.1109/TNN.2006.871720
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 46 条
[1]  
Berglund E., 2003, Proceedings of the Eighth Australian and New Zealand Intelligent Information Systems Conference (ANZIIS 2003), P159
[2]  
BERGLUND E, 2004, PLSOM CONTROLLED 6 D
[3]   GTM: The generative topographic mapping [J].
Bishop, CM ;
Svensen, M ;
Williams, CKI .
NEURAL COMPUTATION, 1998, 10 (01) :215-234
[4]  
Bishop CM, 1997, ADV NEUR IN, V9, P354
[5]  
CAMPBELL A, 2005, P INT C INT DAT ENG, P343
[6]  
Cole R., 1990, Adv. Neural Inf. Process. Syst.
[7]  
Cole R. A., 1990, 90004 OR GRAD I
[8]  
COTTRELL JS, 1987, RAPID COMMUN MASS SP, V1, P1
[9]   Theoretical aspects of the SOM algorithm [J].
Cottrell, M ;
Fort, JC ;
Pagès, G .
NEUROCOMPUTING, 1998, 21 (1-3) :119-138
[10]  
DIETTERICH TG, 1991, PROCEEDINGS : NINTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, P572