A mathematical method for parameter estimation in a tumor growth model

被引:4
作者
Knopoff, D. [1 ,2 ]
Fernandez, D. [2 ]
Torres, G. [2 ]
Turner, C. [2 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10100 Turin, Italy
[2] Univ Nacl Cordoba, CIEM CONICET, Fac Matemat Astron & Fis, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
关键词
Avascular tumor; PDE-constrained optimization; Inverse problem; Mathematical modeling; MULTICELLULAR SPHEROIDS; CANCER; CELLS; CONVERGENCE; DIFFUSION; NECROSIS; GLUCOSE;
D O I
10.1007/s40314-015-0259-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a methodology for estimating the effectiveness of a drug, an unknown parameter that appears on an avascular, spheric tumor growth model formulated in terms of a coupled system of partial differential equations (PDEs). This model is formulated considering a continuum of live cells that grow by the action of a nutrient. Volume changes occur due to cell birth and death, describing a velocity field. The model assumes that when the drug is applied externally, it diffuses and kills cells. The effectiveness of the drug is obtained by solving an inverse problem which is a PDE-constrained optimization problem. We define suitable objective functions by fitting the modeled and the observed tumor radius and the inverse problem is solved numerically using a Pattern Search method. It is observed that the effectiveness of the drug is retrieved with a reasonable accuracy. Experiments with noised data are also considered and the results are compared and contrasted.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [41] A Glycolysis-Based In Silico Model for the Solid Tumor Growth
    Papadogiorgaki, Maria
    Kounelakis, Michalis G.
    Koliou, Panagiotis
    Zervakis, Michalis E.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) : 1106 - 1117
  • [42] Proper likelihood functions for parameter estimation in S-shaped models of unperturbed tumor growth
    Ramirez-Torres, Erick E.
    Castaneda, Antonio R. Selva
    Randez, Luis
    Sisson, Scott A.
    Cabrales, Luis E. Bergues
    Montijano, Juan I.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [43] Parameter estimation and optimal scheduling algorithm for a mathematical model of intermittent androgen suppression therapy for prostate cancer
    Guo, Qian
    Lu, Zhichang
    Hirata, Yoshito
    Aihara, Kazuyuki
    CHAOS, 2013, 23 (04)
  • [44] Three-dimensional multispecies nonlinear tumor growth - I - Model and numerical method
    Wise, S. M.
    Lowengrub, J. S.
    Frieboes, H. B.
    Cristini, V.
    JOURNAL OF THEORETICAL BIOLOGY, 2008, 253 (03) : 524 - 543
  • [45] Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development
    Bernard, Apexa
    Kimko, Holly
    Mital, Dinesh
    Poggesi, Italo
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2012, 8 (09) : 1057 - 1069
  • [46] Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism
    Morbiducci, U
    Tura, A
    Grigioni, M
    COMPUTERS IN BIOLOGY AND MEDICINE, 2005, 35 (10) : 862 - 874
  • [47] A parameter estimation method for a simplified electrochemical model for Li-ion batteries
    Li, Junfu
    Wang, Lixin
    Lyu, Chao
    Liu, Enhui
    Xing, Yinjiao
    Pecht, Michael
    ELECTROCHIMICA ACTA, 2018, 275 : 50 - 58
  • [48] A Method on Parameter Estimation of Nonlinear Systems
    Horio, Makoto
    Moriomto, Jiro
    Tabuchi, Toshiaki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1004 - 1007
  • [49] Analysis of a mathematical model for tumor therapy with a fusogenic oncolytic virus
    Jacobsen, Karly
    Pilyugin, Sergei S.
    MATHEMATICAL BIOSCIENCES, 2015, 270 : 169 - 182
  • [50] Mathematical modeling of tumor growth and treatment: Triple negative breast cancer
    Wei, Hsiu-Chuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 204 : 645 - 659