A mathematical method for parameter estimation in a tumor growth model

被引:4
|
作者
Knopoff, D. [1 ,2 ]
Fernandez, D. [2 ]
Torres, G. [2 ]
Turner, C. [2 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10100 Turin, Italy
[2] Univ Nacl Cordoba, CIEM CONICET, Fac Matemat Astron & Fis, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
关键词
Avascular tumor; PDE-constrained optimization; Inverse problem; Mathematical modeling; MULTICELLULAR SPHEROIDS; CANCER; CELLS; CONVERGENCE; DIFFUSION; NECROSIS; GLUCOSE;
D O I
10.1007/s40314-015-0259-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a methodology for estimating the effectiveness of a drug, an unknown parameter that appears on an avascular, spheric tumor growth model formulated in terms of a coupled system of partial differential equations (PDEs). This model is formulated considering a continuum of live cells that grow by the action of a nutrient. Volume changes occur due to cell birth and death, describing a velocity field. The model assumes that when the drug is applied externally, it diffuses and kills cells. The effectiveness of the drug is obtained by solving an inverse problem which is a PDE-constrained optimization problem. We define suitable objective functions by fitting the modeled and the observed tumor radius and the inverse problem is solved numerically using a Pattern Search method. It is observed that the effectiveness of the drug is retrieved with a reasonable accuracy. Experiments with noised data are also considered and the results are compared and contrasted.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [1] A mathematical method for parameter estimation in a tumor growth model
    D. Knopoff
    D. Fernández
    G. Torres
    C. Turner
    Computational and Applied Mathematics, 2017, 36 : 733 - 748
  • [2] A numerical method based on the moving mesh for the solving of a mathematical model of the avascular tumor growth
    Bagherpoorfard, Mina
    Soheili, Ali Reza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 327 - 346
  • [3] Comparing Methods for Parameter Estimation of the Gompertz Tumor Growth Model
    Patmanidis, Spyridon
    Charalampidis, Alexandros C.
    Kordonis, Ioannis
    Mitsis, Georgios D.
    Papavassilopoulos, George P.
    IFAC PAPERSONLINE, 2017, 50 (01): : 12203 - 12209
  • [4] MATHEMATICAL MODEL AND ITS FAST NUMERICAL METHOD FOR THE TUMOR GROWTH
    Lee, Hyun Geun
    Kim, Yangjin
    Kim, Junseok
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (06) : 1173 - 1187
  • [5] Parameter Estimation in the Mathematical Model of Bacterial Colony Patterns in Symmetry Domain
    Brociek, Rafal
    Wajda, Agata
    Capizzi, Giacomo
    Slota, Damian
    SYMMETRY-BASEL, 2023, 15 (04):
  • [6] Parameter and State Estimation of a Mathematical Model of Carbohydrate Intake
    Olay-Blanco, A.
    Rodriguez-Linan, A.
    Quiroz, G.
    IFAC PAPERSONLINE, 2018, 51 (13): : 73 - 78
  • [7] Adjoint method for a tumor growth PDE-constrained optimization problem
    Knopoff, D. A.
    Fernandez, D. R.
    Torres, G. A.
    Turner, C. V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (06) : 1104 - 1119
  • [8] Response of Tumor Spheroids to Radiation: Modeling and Parameter Estimation
    Bertuzzi, A.
    Bruni, C.
    Fasano, A.
    Gandolfi, A.
    Papa, F.
    Sinisgalli, C.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (05) : 1069 - 1091
  • [9] A multiscale method for model order reduction in PDE parameter estimation
    Fung, Samy Wu
    Ruthotto, Lars
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 19 - 34
  • [10] A numerical algorithm for avascular tumor growth model
    Mahmood, Mohammed Shuker
    Mahmood, Silvia
    Dobrota, Dusan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (06) : 1269 - 1277