Mechanical properties of free-standing graphene oxide

被引:34
|
作者
Kang, Shao-Hui [1 ]
Fang, Te-Hua [1 ]
Hong, Zheng-Han [2 ]
Chuang, Cheng-Hsin [3 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung 807, Taiwan
[2] MIRDC, Mold & Precis Machining Technol Sect, Micro Meso Mech Mfg R&D Dept, Taipei, Taiwan
[3] Southern Taiwan Univ, Dept Mech Engn, Tainan 710, Taiwan
关键词
graphene oxide; free-standing films; mechanical properties; nanoindentation; Young's modulus; critical energy; FUNCTIONALIZED GRAPHENE; PHASE-TRANSFORMATIONS; ELASTIC PROPERTIES; FORCE MICROSCOPY; RAMAN-SPECTRA; NANOINDENTATION; INDENTATION; SHEETS; FILMS; GRAPHITE;
D O I
10.1016/j.diamond.2013.06.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical properties of free-standing graphene oxide (GO) films were investigated using nanoindentation on a dynamic contact module (DCM) system. The Young's modulus, stiffness, and ultimate strength of thin films were evaluated. Nanoindentation measurements were combined with the DCM to evaluate the mechanical properties of thin films and to predict the crack length and critical energy. Electrophoretically deposited GO film, 50 similar to 60 nm in thickness, was found to have a Young's modulus of 695 +/- 53 similar to 697 +/- 15 GPa. The critical energy values for 50- and 60-nm-thick films were 0.142 similar to 0.201 and 0.479 similar to 0.596 J/m(2), respectively. Nanoindentation combined with the DCM can thus be used to obtain the mechanical properties and critical energy of thin films. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [41] Free-standing vanadium oxide hydration/reduced graphene oxide film for ammonium ion supercapacitors
    Fan, Yanzhi
    Yu, Yao
    Wang, Peng
    Sun, Jingjing
    Hu, Mingjie
    Sun, Jianguo
    Zhang, Yifu
    Huang, Chi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 633 : 333 - 342
  • [42] A Growth Mechanism for Free-Standing Vertical Graphene
    Zhao, Jiong
    Shaygan, Mehrdad
    Eckert, Juergen
    Meyyappan, M.
    Ruemmeli, Mark H.
    NANO LETTERS, 2014, 14 (06) : 3064 - 3071
  • [43] Ballistic thermophoresis of adsorbates on free-standing graphene
    Panizon, Emanuele
    Guerra, Roberto
    Tosatti, Erio
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (34) : E7035 - E7044
  • [44] Excitonic Fano Resonance in Free-Standing Graphene
    Chae, Dong-Hun
    Utikal, Tobias
    Weisenburger, Siegfried
    Giessen, Harald
    von Klitzing, Klaus
    Lippitz, Markus
    Smet, Jurgen
    NANO LETTERS, 2011, 11 (03) : 1379 - 1382
  • [45] Rippling and crumpling in disordered free-standing graphene
    Gornyi, I. V.
    Kachorovskii, V. Yu.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2015, 92 (15)
  • [46] Acoustic plasmons in extrinsic free-standing graphene
    Pisarra, M.
    Sindona, A.
    Riccardi, P.
    Silkin, V. M.
    Pitarke, J. M.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [47] Functional Free-Standing Graphene Honeycomb Films
    Yin, Shengyan
    Goldovsky, Yulia
    Herzberg, Moshe
    Liu, Lei
    Sun, Hang
    Zhang, Yanyan
    Meng, Fanben
    Cao, Xuebo
    Sun, Darren D.
    Chen, Hongyu
    Kushmaro, Ariel
    Chen, Xiaodong
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (23) : 2972 - 2978
  • [48] Elastic straining of free-standing monolayer graphene
    Cao, Ke
    Feng, Shizhe
    Han, Ying
    Gao, Libo
    Thuc Hue Ly
    Xu, Zhiping
    Lu, Yang
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] Free-standing graphene/vanadium oxide composite as binder-free electrode for asymmetrical supercapacitor
    Deng, Lingjuan
    Gao, Yihong
    Ma, Zhanying
    Fan, Guang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 505 : 556 - 565
  • [50] Plasmon spectroscopy of free-standing graphene films
    Eberlein, T.
    Bangert, U.
    Nair, R. R.
    Jones, R.
    Gass, M.
    Bleloch, A. L.
    Novoselov, K. S.
    Geim, A.
    Briddon, P. R.
    PHYSICAL REVIEW B, 2008, 77 (23)