High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review

被引:753
作者
Chandan, Amrit [1 ]
Hattenberger, Mariska [1 ]
El-Kharouf, Ahmad [1 ]
Du, Shangfeng [1 ]
Dhir, Aman [1 ]
Self, Valerie
Pollet, Bruno G. [2 ,3 ]
Ingram, Andrew [1 ]
Bujalski, Waldemar [1 ]
机构
[1] Univ Birmingham, Sch Chem Engn, Ctr Hydrogen & Fuel Cell Res, Edgbaston B15 2TT, England
[2] Univ Warwick, Tata Motors UK, Coventry, W Midlands, England
[3] Univ Western Cape, SAIAMC, HySA Syst Competence Ctr, ZA-7535 Cape Town, South Africa
关键词
Fuel cell; Intermediate/high temperature PEM; Stack; Bipolar plate; Catalyst layer; Gas diffusion layer; PROTON-EXCHANGE MEMBRANES; COMPOSITE MEMBRANES; PERFORMANCE DEGRADATION; ELEVATED-TEMPERATURE; LOW-HUMIDITY; NANOCOMPOSITE MEMBRANES; CONDUCTING MEMBRANES; OXYGEN REDUCTION; CATHODE CATALYST; BIPOLAR PLATES;
D O I
10.1016/j.jpowsour.2012.11.126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One possible solution of combating issues posed by climate change is the use of the High Temperature (HT) Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) in some applications. The typical HT-PEMFC operating temperatures are in the range of 100-200 degrees C which allows for co-generation of heat and power, high tolerance to fuel impurities and simpler system design. This paper reviews the current literature concerning the HT-PEMFC, ranging from cell materials to stack and stack testing. Only acid doped PBI membranes meet the US DOE (Department of Energy) targets for high temperature membranes operating under no humidification on both anode and cathode sides (barring the durability). This eliminates the stringent requirement for humidity however, they have many potential drawbacks including increased degradation, leaching of acid and incompatibility with current state-of-the-art fuel cell materials. In this type of fuel cell, the choice of membrane material determines the other fuel cell component material composition, for example when using an acid doped system, the flow field plate material must be carefully selected to take into account the advanced degradation. Novel research is required in all aspects of the fuel cell components in order to ensure that they meet stringent durability requirements for mobile applications. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 278
页数:15
相关论文
共 175 条
[11]   Nafion® perfluorinated membranes in fuel cells [J].
Banerjee, S ;
Curtin, DE .
JOURNAL OF FLUORINE CHEMISTRY, 2004, 125 (08) :1211-1216
[12]   Liquid water visualization in PEM fuel cells: A review [J].
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :3845-3857
[13]   Design of an 80 kWe PEM fuel cell system:: Scale up effect investigation [J].
Bonnet, C. ;
Didierjean, S. ;
Guillet, N. ;
Besse, S. ;
Colinart, T. ;
Carre, P. .
JOURNAL OF POWER SOURCES, 2008, 182 (02) :441-448
[14]   Development and demonstration of a higher temperature PEM fuel cell stack [J].
Bonville, LJ ;
Kunz, HR ;
Song, Y ;
Mientek, A ;
Williams, M ;
Ching, A ;
Fenton, JM .
JOURNAL OF POWER SOURCES, 2005, 144 (01) :107-112
[15]   Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges [J].
Bose, Saswata ;
Kuila, Tapas ;
Thi Xuan Lien Nguyen ;
Kim, Nam Hoon ;
Lau, Kin-tak ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) :813-843
[16]   What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance [J].
Brett, Daniel J. L. ;
Kucernak, Anthony R. ;
Aguiar, Patricia ;
Atkins, Stephen C. ;
Brandon, Nigel P. ;
Clague, Ralph ;
Cohen, Lesley F. ;
Hinds, Gareth ;
Kalyvas, Christos ;
Offer, Gregory J. ;
Ladewig, Bradley ;
Maher, Robert ;
Marquis, Andrew ;
Shearing, Paul ;
Vasileiadis, Nikos ;
Vesovic, Velisa .
CHEMPHYSCHEM, 2010, 11 (13) :2714-2731
[17]   Nafion-zirconium phosphate nanocomposite membranes with high filler loadings: Conductivity and mechanical properties [J].
Casciola, M. ;
Capitani, D. ;
Comite, A. ;
Donnadio, A. ;
Frittella, V. ;
Pica, M. ;
Sganappa, M. ;
Varzi, A. .
FUEL CELLS, 2008, 8 (3-4) :217-224
[18]   Hydrogen crossover in high-temperature PEM fuel cells [J].
Cheng, Xuan ;
Zhang, Jianlu ;
Tang, Yanghua ;
Song, Chaojie ;
Shen, Jun ;
Song, Datong ;
Zhang, Jiujun .
JOURNAL OF POWER SOURCES, 2007, 167 (01) :25-31
[19]   Comparative studies of polymer electrolyte membrane fuel cell stack and single cell [J].
Chu, D ;
Jiang, RZ .
JOURNAL OF POWER SOURCES, 1999, 80 (1-2) :226-234
[20]   Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes [J].
Chun, YG ;
Kim, CS ;
Peck, DH ;
Shin, DR .
JOURNAL OF POWER SOURCES, 1998, 71 (1-2) :174-178