Forces acting on a small particle in an acoustical field in a thermoviscous fluid

被引:182
作者
Karlsen, Jonas T. [1 ]
Bruus, Henrik [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
关键词
HEAT-CONDUCTING FLUID; RADIATION FORCE; SPHERICAL-PARTICLE; SCATTERING; CELLS; ACOUSTOPHORESIS; ATTENUATION; FORMULATION; ULTRASOUND; CAPACITIES;
D O I
10.1103/PhysRevE.92.043010
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses delta(s) and delta(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength lambda. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.
引用
收藏
页数:22
相关论文
共 58 条
[51]   Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter [J].
Schmid, Lothar ;
Weitz, David A. ;
Franke, Thomas .
LAB ON A CHIP, 2014, 14 (19) :3710-3718
[52]   Forces acting on a small particle in an acoustical field in a viscous fluid [J].
Settnes, Mikkel ;
Bruus, Henrik .
PHYSICAL REVIEW E, 2012, 85 (01)
[53]   Elastomeric Negative Acoustic Contrast Particles for Capture, Acoustophoretic Transport, and Confinement of Cells in Microfluidic Systems [J].
Shields, C. Wyatt ;
Johnson, Leah M. ;
Gao, Lu ;
Lopez, Gabriel P. .
LANGMUIR, 2014, 30 (14) :3923-3927
[54]   Acoustophoretic Synchronization of Mammalian Cells in Microchannels [J].
Thevoz, Patrick ;
Adams, Jonathan D. ;
Shea, Herbert ;
Bruus, Henrik ;
Soh, H. Tom .
ANALYTICAL CHEMISTRY, 2010, 82 (07) :3094-3098
[55]   Non-contact handling in microassembly: Acoustical levitation [J].
Vandaele, V ;
Lambert, P ;
Delchambre, A .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2005, 29 (04) :491-505
[56]   The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use [J].
Wagner, W ;
Pruss, A .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2002, 31 (02) :387-535
[57]   Parametric study of single-axis acoustic levitation [J].
Xie, WJ ;
Wei, B .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :881-883
[58]  
Yosioka K., 1955, Acta Acust. Acust., V5, P167