Lyapunov analysis: from dynamical systems theory to applications PREFACE

被引:20
作者
Cencini, Massimo [1 ]
Ginelli, Francesco [2 ]
机构
[1] CNR, Ist Sistemi Complessi, I-00185 Rome, Italy
[2] Univ Aberdeen, Univ London Kings Coll, Inst Complex Syst & Math Biol, SUPA, Aberdeen AB24 3UE, Scotland
关键词
METRIC INVARIANT; ERGODIC-THEORY; PROOF; TIME;
D O I
10.1088/1751-8113/46/25/250301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
[No abstract available]
引用
收藏
页数:5
相关论文
共 36 条
[1]  
[Anonymous], 1959, At Energ, DOI [10.1007/BF01483352, DOI 10.1007/BF01483352]
[2]  
[Anonymous], 1892, METHODS NOUVELLES ME
[3]  
[Anonymous], 1975, LECT NOTES MATH
[4]  
Anosov DV., 1967, Russ. Math. Surveys, V22, P103, DOI [DOI 10.1070/RM1967V022N05ABEH001228, 10.1070/RM1967v022n0]
[5]  
Benettin Giancarlo, 1980, Meccanica, V15, P9, DOI DOI 10.1007/BF02128236
[6]   Proof of the ergodic theorem [J].
Birkhoff, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 :656-660
[7]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]  
enon M, 1964, ASTRON J, V69, P73
[10]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52