A proximal point algorithm with asymmetric linear term

被引:5
作者
Cai, Xingju [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS Jiangsu Prov, Nanjing 210023, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Proximal point algorithm; Asymmetric proximal term; Linear convergence; Inexact APPA;
D O I
10.1007/s11590-018-1277-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose an asymmetric proximal point algorithm for solving variational inequality problems. The algorithm is asymmetric in the sense that the matrix in the linear proximal term is not necessary to be a symmetric matrix, which makes the method more flexible, especially in dealing with problems with separable structures. Under some suitable conditions, we prove the global linear convergence of the algorithm. To make the method more practical, we allow the subproblem to be solved in an approximate manner and a flexible inaccuracy criterion with constant parameter is adopted. Finally, we report some preliminary numerical results.
引用
收藏
页码:777 / 793
页数:17
相关论文
共 36 条
[1]   A logarithmic-quadratic proximal method for variational inequalities [J].
Auslender, A ;
Teboulle, M ;
Ben-Tiba, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :31-40
[2]  
Bertsekas Dimitri P., 1989, Parallel and distributed computation: numerical methods
[3]   A generalized proximal point algorithm for the variational inequality problem in a Hilbert space [J].
Burachik, RS ;
Iusem, AN .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) :197-216
[4]   An improved first-order primal-dual algorithm with a new correction step [J].
Cai, Xingju ;
Han, Deren ;
Xu, Lingling .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) :1419-1428
[5]   PROXIMAL MINIMIZATION ALGORITHM WITH D-FUNCTIONS [J].
CENSOR, Y ;
ZENIOS, SA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 73 (03) :451-464
[6]  
Douglas J., 1956, Trans. Amer. Math. Soc., V82, P421, DOI [10.1090/S0002-9947-1956-0084194-4, DOI 10.1090/S0002-9947-1956-0084194-4]
[7]   Approximate iterations in Bregman-function-based proximal algorithms [J].
Eckstein, J .
MATHEMATICAL PROGRAMMING, 1998, 83 (01) :113-123
[9]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[10]  
Facchinei F, 2004, SPRING S OPERAT RES, DOI 10.1007/b97543