A De-Noising Algorithm Based on EEMD in Raman-Based Distributed Temperature Sensor

被引:30
作者
Pan, Liang [1 ]
Liu, Kun [1 ]
Jiang, Junfeng [1 ]
Ma, Chunyu [1 ]
Tian, Miao [1 ]
Liu, Tiegen [1 ]
机构
[1] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Raman; distributed temperature sensor; ensemble empirical mode decomposition; de-noising; EMPIRICAL MODE DECOMPOSITION; WAVELET TRANSFORM; DENOISING METHOD; SPECTRUM;
D O I
10.1109/JSEN.2016.2623860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A de-noising algorithm based on ensemble empirical mode decomposition (EEMD) method is employed in this paper for Raman-based distributed temperature sensor (RDTS). We first decompose the noisy signal using the EEMD and find local maxima on each intrinsic mode function (IMF) whose zero contour line is used to determine noise interval. The signal is then de-noised and reconstructed by removing the noise components of each IMF. The experimental results demonstrated that the proposed de-noising algorithm can enhance the signal-to-noise ratio by 8.8 dB while maintaining spatial resolution. The temperature error reduction of 3.2 degrees C can be achieved at 10 km using conventional RDTS without losing any detail.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 2005, INT J INFORM COMMUN
[2]   Recent Progress in Distributed Fiber Optic Sensors [J].
Bao, Xiaoyi ;
Chen, Liang .
SENSORS, 2012, 12 (07) :8601-8639
[3]   Raman-based fibre sensors: Trends and applications [J].
Bolognini, Gabriele ;
Hartog, Arthur .
OPTICAL FIBER TECHNOLOGY, 2013, 19 (06) :678-688
[4]   THE USE OF THE WAVELET TRANSFORM IN THE DETECTION OF AN UNKNOWN TRANSIENT SIGNAL [J].
FRISCH, M ;
MESSER, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :892-897
[5]   A FAST SPECTRAL ESTIMATION ALGORITHM-BASED ON THE FFT [J].
GOUGH, PT .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (06) :1317-1322
[6]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[7]   WEAK LFM SIGNAL DECTECTION BASED ON WAVELET TRANSFORM MODULUS MAXIMA DENOISING AND OTHER TECHNIQUES [J].
Le, Bo ;
Liu, Zhong ;
Gu, Tianxiang .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (02) :313-326
[8]   Efficient mixed-spectrum estimation with applications to target feature extraction [J].
Li, J ;
Stoica, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (02) :281-295
[9]   Empirical Mode Decomposition-Based Time-Frequency Analysis of Multivariate Signals [J].
Mandic, Danilo P. ;
Rehman, Naveed Ur ;
Wu, Zhaohua ;
Huang, Norden E. .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (06) :74-86
[10]   Quantile-Based Empirical Mode Decomposition: An Efficient Way to Decompose Noisy Signals [J].
Park, Minsu ;
Kim, Donghoh ;
Oh, Hee-Seok .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (07) :1802-1813