A $p$-adic monodromy theorem for de Rham local systems

被引:4
|
作者
Shimizu, Koji [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, 43 Evans Hall, Berkeley, CA 94720 USA
[2] Tsinghua Univ, Yau Math Sci Ctr, W10 Ningzhai, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
rigid analytic geometry; p-adic Hodge theory; WEIGHT SPECTRAL SEQUENCES; COMPARISON ISOMORPHISMS; HODGE THEORY; CRYSTALLINE; REDUCTION; REPRESENTATIONS; INDEPENDENCE; CONJECTURE; VARIETIES; CONSTANCY;
D O I
10.1112/S0010437X2200776X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study horizontal semistable and horizontal de Rham representations of the absolute Galois group of a certain smooth affinoid over a p-adic field. In particular, we prove that a horizontal de Rham representation becomes horizontal semistable after a finite extension of the base field. As an application, we show that every de Rham local system on a smooth rigid analytic variety becomes horizontal semistable etale locally around every classical point. We also discuss potentially crystalline loci of de Rham local systems and cohomologically potentially good reduction loci of smooth proper morphisms.
引用
收藏
页码:2157 / 2205
页数:50
相关论文
共 50 条