Analysis of a Gyroscopic-Stabilized Floating Offshore Hybrid Wind-Wave Platform

被引:24
|
作者
Fenu, Beatrice [1 ]
Attanasio, Valentino [1 ]
Casalone, Pietro [1 ]
Novo, Riccardo [1 ]
Cervelli, Giulia [1 ]
Bonfanti, Mauro [1 ]
Sirigu, Sergej Antonello [1 ]
Bracco, Giovanni [1 ]
Mattiazzo, Giuliana [1 ]
机构
[1] Politecn Torino, Dept Mech & Aerosp Engn, Cso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
wind energy; wave energy; gyroscope; floating platform; hydrodynamics; marine renewable; ENERGY CONVERTER; DYNAMICS; TURBINE;
D O I
10.3390/jmse8060439
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The energy innovation scenario sees hybrid wind-wave platforms as a promising technology for reducing the variability of the power output and for the minimization of the cost of offshore marine renewable installations. This article presents a model that describes the installation of a 5 MW wind turbine on a floating platform designed by Fincantieri and equipped with gyroscopic stabilization. The use of gyros allows for the delivery of platform stabilization by damping the wave and wind induced motion on the floater and at the same time producing extra power. Shetland Island was chosen as the reference site because of its particularly harsh weather. Final results show that the total production of power in moderate and medium climate conditions is considerable thanks to the installation of the gyro, together with a significant stabilization of the platform in terms of pitching angle and nacelle acceleration.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Overview of the Recent Developments in Hybrid Floating Wind-Wave Platforms
    Hallak, T. S.
    Soares, C. Guedes
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2025, 24 (01) : 98 - 119
  • [2] Performance Analysis of a Floating Wind-Wave Power Generation Platform Based on the Frequency Domain Model
    Chen, Mingsheng
    Deng, Jiang
    Yang, Yi
    Zhou, Hao
    Tao, Tao
    Liu, Shi
    Sun, Liang
    Hua, Lin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [3] Deep Learning for Modeling an Offshore Hybrid Wind-Wave Energy System
    Manshadi, Mahsa Dehghan
    Mousavi, Milad
    Soltani, M.
    Mosavi, Amir
    Kovacs, Levente
    ENERGIES, 2022, 15 (24)
  • [4] Optimization of wind-wave hybrid system based on wind-wave coupling model
    Liu, Tiesheng
    Liu, Yanjun
    Huang, Shuting
    Xue, Gang
    IET RENEWABLE POWER GENERATION, 2024, 18 (08) : 1407 - 1427
  • [5] Coupled wind-wave time domain analysis of floating offshore wind turbine based on Computational Fluid Dynamics method
    Ren, Nianxin
    Li, Yugang
    Ou, Jinping
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2014, 6 (02)
  • [6] Study on Aerodynamic Performance and Wake Characteristics of a Floating Offshore Wind Turbine in Wind-Wave Coupling Field
    Liang, Xiaoling
    Li, Zheng
    Han, Xingxing
    Fu, Shifeng
    Zhu, Weijun
    Pu, Tianmei
    Sun, Zhenye
    Yang, Hua
    Shen, Wenzhong
    SUSTAINABILITY, 2024, 16 (13)
  • [7] Power performance and motion characteristics of a floating hybrid wind-wave energy system
    Wang, Maojie
    Bao, Xingxian
    Qu, Ming
    Wang, Teng
    Iglesias, Gregorio
    OCEAN ENGINEERING, 2025, 318
  • [8] Multi-Objective Optimal Design of the Wind-Wave Hybrid Platform with the Coupling Interaction
    Deng, Ziwei
    Zhang, Baocheng
    Miao, Yu
    Zhao, Bo
    Wang, Qiang
    Zhang, Kaisheng
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2023, 22 (05) : 1165 - 1180
  • [9] Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm
    Ghigo, Alberto
    Cottura, Lorenzo
    Caradonna, Riccardo
    Bracco, Giovanni
    Mattiazzo, Giuliana
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (11) : 1 - 26
  • [10] Fully Coupled Analysis of an Integrated Floating Wind-Wave Power Generation Platform in Operational Sea-States
    Chen, Mingsheng
    Xiao, Panpan
    Zhou, Hao
    Li, Chun Bao
    Zhang, Xianxiong
    FRONTIERS IN ENERGY RESEARCH, 2022, 10