TRANSPORT IN INHOMOGENEOUS SYSTEMS

被引:0
作者
Vahabi, M. [1 ]
Shokri, B. [1 ,2 ]
机构
[1] Shahid Beheshti Univ, Dept Phys, Tehran 19839, Iran
[2] Shahid Beheshti Univ, Laser Plasma Res Inst, Tehran 19839, Iran
关键词
scale-free transport; inhomogeneous systems; diffusion equations; TIME RANDOM-WALKS; ANOMALOUS TRANSPORT; FICKS LAW; DIFFUSION; DYNAMICS; PARADIGM; FUSION; MODELS; SCALE; CELL;
D O I
10.1016/S0034-4877(12)60029-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, transport is considered in an infinite one-dimensional system where inhomogeneity is present. The formulation of transport is investigated for the most general case using the microscopic global reversibility (GR) symmetry and the generalized master equation corresponding to the separable continuous time random walk model. Familiar diffusion equations (classical and fractional (nonlocal and/or non-Markovian)) are revisited when applying special conditions on these general formulae.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 49 条
[1]  
[Anonymous], 1995, Oxford science publications
[2]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[3]   Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media [J].
Berkowitz, B ;
Kosakowski, G ;
Margolin, G ;
Scher, H .
GROUND WATER, 2001, 39 (04) :593-604
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]   Fractional generalization of Fick's law:: A microscopic approach [J].
Calvo, I. ;
Sanchez, R. ;
Carreras, B. A. ;
van Milligen, B. Ph. .
PHYSICAL REVIEW LETTERS, 2007, 99 (23)
[6]   Continuous time random walks on moving fluids [J].
Compte, A .
PHYSICAL REVIEW E, 1997, 55 (06) :6821-6831
[7]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[8]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[9]  
Fick A., 1855, PHILOS MAG, V10, P30, DOI [10.1080/14786445508641925, DOI 10.1080/14786445508641925]
[10]   Discrete random walk models for space-time fractional diffusion [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Pagnini, G ;
Paradisi, P .
CHEMICAL PHYSICS, 2002, 284 (1-2) :521-541