TRANSPORT IN INHOMOGENEOUS SYSTEMS

被引:0
作者
Vahabi, M. [1 ]
Shokri, B. [1 ,2 ]
机构
[1] Shahid Beheshti Univ, Dept Phys, Tehran 19839, Iran
[2] Shahid Beheshti Univ, Laser Plasma Res Inst, Tehran 19839, Iran
关键词
scale-free transport; inhomogeneous systems; diffusion equations; TIME RANDOM-WALKS; ANOMALOUS TRANSPORT; FICKS LAW; DIFFUSION; DYNAMICS; PARADIGM; FUSION; MODELS; SCALE; CELL;
D O I
10.1016/S0034-4877(12)60029-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, transport is considered in an infinite one-dimensional system where inhomogeneity is present. The formulation of transport is investigated for the most general case using the microscopic global reversibility (GR) symmetry and the generalized master equation corresponding to the separable continuous time random walk model. Familiar diffusion equations (classical and fractional (nonlocal and/or non-Markovian)) are revisited when applying special conditions on these general formulae.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 49 条
  • [1] [Anonymous], 1995, Oxford science publications
  • [2] Anomalous transport in laboratory-scale, heterogeneous porous media
    Berkowitz, B
    Scher, H
    Silliman, SE
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (01) : 149 - 158
  • [3] Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media
    Berkowitz, B
    Kosakowski, G
    Margolin, G
    Scher, H
    [J]. GROUND WATER, 2001, 39 (04) : 593 - 604
  • [4] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [5] Fractional generalization of Fick's law:: A microscopic approach
    Calvo, I.
    Sanchez, R.
    Carreras, B. A.
    van Milligen, B. Ph.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (23)
  • [6] Continuous time random walks on moving fluids
    Compte, A
    [J]. PHYSICAL REVIEW E, 1997, 55 (06) : 6821 - 6831
  • [7] Nondiffusive transport in plasma turbulence: A fractional diffusion approach
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, VE
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (06)
  • [8] Fractional diffusion in plasma turbulence
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, VE
    [J]. PHYSICS OF PLASMAS, 2004, 11 (08) : 3854 - 3864
  • [9] Fick A., 1855, PHILOS MAG, V10, P30, DOI [10.1080/14786445508641925, DOI 10.1080/14786445508641925]
  • [10] Discrete random walk models for space-time fractional diffusion
    Gorenflo, R
    Mainardi, F
    Moretti, D
    Pagnini, G
    Paradisi, P
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 521 - 541