An ensemble learning based hybrid model and framework for air pollution forecasting

被引:49
|
作者
Chang, Yue-Shan [1 ]
Abimannan, Satheesh [2 ]
Chiao, Hsin-Ta [3 ]
Lin, Chi-Yeh [1 ]
Huang, Yo-Ping [4 ]
机构
[1] Natl Taipei Univ, Dept Comp Sci & Informat Engn, New Taipei, Taiwan
[2] Galgotias Univ, Greater Noida, Uttar Pradesh, India
[3] Tunghai Univ, Taichung, Taiwan
[4] Natl Taipei Univ Technol, Taipei, Taiwan
关键词
Air pollution forecasting; Ensemble learning; LSTM; Pearson correlation coefficient; PM2; 5; SVR; GBTR; ARTIFICIAL NEURAL-NETWORKS; PM2.5; CONCENTRATIONS; QUALITY PREDICTION; PM10;
D O I
10.1007/s11356-020-09855-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As advance of economy and industry, the impact of air pollution has gradually gained attention. In order to predict air quality, there were many studies that exploited various machine learning techniques to build predictive model for pollutant concentration or air quality prediction. However, enhancing the prediction performance always is the common problem of existing studies. Traditional templates based on machine learning and deep learning methods, such as GBTR (gradient boosted tree regression), SVR (support vector machine-based regression), and LSTM (long short-term memory), are most promising approaches to address these problems. Some previous researches showed that ensemble learning technology can improve predictive performance of other domains. In order to improve the accuracy of forecasting, in this paper, we propose a hybrid model and framework to improve the forecasting accuracy of air pollution. We not only exploit stacking-based ensemble learning scheme with Pearson correlation coefficient to calculate the correlation between different machine learning models to integrate various forecasting models together, but also construct a framework based on Spark+Hadoop machine learning and TensorFlow deep learning framework to physically integrate these models to demonstrate the next 1 to 8 h' air pollution forecasting. We also conduct experiments and compare the result with GBTR, SVR, LSTM, and LSTM2 (version 2) models to demonstrate the proposed hybrid model's predictive performance. The experimental results show that the hybrid model is superior to the existing models used for predicting air pollution.
引用
收藏
页码:38155 / 38168
页数:14
相关论文
共 50 条
  • [41] Store-based Demand Forecasting of a Company via Ensemble Learning
    Tekin, Ahmet Tezcan
    Sari, Cem
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 : 14 - 23
  • [42] Research on a Novel Hybrid Decomposition-Ensemble Learning Paradigm Based on VMD and IWOA for PM2.5 Forecasting
    Guo, Hengliang
    Guo, Yanling
    Zhang, Wenyu
    He, Xiaohui
    Qu, Zongxi
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (03) : 1 - 20
  • [43] Value-at-Risk forecasting: A hybrid ensemble learning GARCH-LSTM based approach
    Kakade, Kshitij
    Jain, Ishan
    Mishra, Aswini Kumar
    RESOURCES POLICY, 2022, 78
  • [44] A hybrid two-stage financial stock forecasting algorithm based on clustering and ensemble learning
    Xu, Ying
    Yan, Cuijuan
    Peng, Shaoliang
    Nojima, Yusuke
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3852 - 3867
  • [45] ResNet and Transformer Hybrid Malware Classification Model Based on Ensemble Learning
    Li, Kewei
    Liu, Fudong
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1269 - 1275
  • [46] A hybrid method for forecasting coal price based on ensemble learning and deep learning with data decomposition and data enhancement
    Tang, Jing
    Guo, Yida
    Han, Yilin
    DATA TECHNOLOGIES AND APPLICATIONS, 2024, 58 (03) : 472 - 495
  • [47] A hybrid two-stage financial stock forecasting algorithm based on clustering and ensemble learning
    Ying Xu
    Cuijuan Yang
    Shaoliang Peng
    Yusuke Nojima
    Applied Intelligence, 2020, 50 : 3852 - 3867
  • [48] Short-term industrial load forecasting based on error correction and hybrid ensemble learning
    Fan, Chaodong
    Nie, Shanghao
    Xiao, Leyi
    Yi, Lingzhi
    Li, Gongrong
    ENERGY AND BUILDINGS, 2024, 313
  • [49] A hybrid system based on ensemble learning to model residuals for time series
    Santos Junior, Domingos S. de O.
    Neto, Paulo S. G. de Mattos
    de Oliveira, Joao F. L.
    Cavalcanti, George D. C.
    INFORMATION SCIENCES, 2023, 649
  • [50] An Ensemble Deep Learning Model for Forecasting Hourly PM2.5 Concentrations
    Mohan, Anju S.
    Abraham, Lizy
    IETE JOURNAL OF RESEARCH, 2023, 69 (10) : 6832 - 6845