Bezier Curves for Solving Fredholm Integral Equations of the Second Kind

被引:0
作者
Ghomanjani, F. [1 ]
Farahi, M. H. [1 ,2 ]
Kilicman, A. [3 ,4 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad, Iran
[2] CEMCS, Mashhad, Iran
[3] Univ Putra Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia
[4] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia
关键词
LEAST-SQUARES METHODS; QUADRATIC OPTIMAL-CONTROL; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; SYSTEM;
D O I
10.1155/2014/147497
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Bezier curves are presented to estimate the solution of the linear Fredholm integral equation of the second kind. A direct algorithm for solving this problem is given. We have chosen the Bezier curves as piecewise polynomials of degree n and determine Bezier curves on [0, 1] by n + 1 control points. Numerical examples illustrate that the algorithm is applicable and very easy to use.
引用
收藏
页数:6
相关论文
共 33 条
[1]   On a symptotic methods for Fredholm-Volterra integral equation of the second kind in contact problems [J].
Abdou, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) :431-446
[2]  
[Anonymous], 2008, HDB INTEGRAL EQUAION, DOI DOI 10.1201/9781420010558
[3]  
Beltran JV, 2004, LECT NOTES COMPUT SC, V3044, P631
[5]  
BLYTH WF, 2004, ANZIAM J, V45, pC269
[6]   Cubic Bezier splines for BEM heat transfer analysis of the 2-D continuous casting problems [J].
Cholewa, R ;
Nowak, AJ ;
Bialecki, RA ;
Wrobel, LC .
COMPUTATIONAL MECHANICS, 2002, 28 (3-4) :282-290
[7]   Computer aided geometric design of strip using developable Bezier patches [J].
Chu, Chih-Hsing ;
Wang, Charlie C. L. ;
Tsai, Chi-Rung .
COMPUTERS IN INDUSTRY, 2008, 59 (06) :601-611
[8]  
Datta K. B., 1995, Orthogonal functions in systems and control, V9
[9]   Least squares methods for solving singularly perturbed two-point boundary value problems using Bezier control points [J].
Evrenosoglu, M. ;
Somali, S. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (10) :1029-1032
[10]  
Farin G., 2014, Curves and surfaces for computer-aided geometric design: a practical guide