ON THE ABSOLUTELY CONTINUOUS SPECTRUM OF STURM-LIOUVILLE OPERATORS WITH APPLICATIONS TO RADIAL QUANTUM TREES

被引:12
作者
Schmied, Michael [1 ]
Sims, Robert [1 ]
Teschl, Gerald [1 ,2 ]
机构
[1] Fac Math, A-1090 Vienna, Austria
[2] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
来源
OPERATORS AND MATRICES | 2008年 / 2卷 / 03期
基金
奥地利科学基金会;
关键词
Sturm-Liouville operators; absolutely continuous spectrum; subordinacy; quantum graphs;
D O I
10.7153/oam-02-25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider standard subordinacy theory for general Sturm-Liouville operators and give criteria when boundedness of solutions implies that no subordinate solutions exist. As applications, we prove a Weidmann-type result for general Sturm-Liouville operators and investigate the absolutely continuous spectrum of radially symmetric quantum trees.
引用
收藏
页码:417 / 434
页数:18
相关论文
共 20 条
[1]   Absolutely continuous spectra of quantum tree graphs with weak disorder [J].
Aizenman, M ;
Sims, R ;
Warzel, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :371-389
[2]   Stability of the absolutely continuous spectrum of random Schrodinger operators on tree graphs [J].
Aizenman, Michael ;
Sims, Robert ;
Warzel, Simone .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) :363-394
[3]  
CARLSON R, 2000, ELECTRON J DIFFER EQ, P1
[4]  
Clark S., 1993, DIFFER INTEGRAL EQU, V6, P573
[5]   Subordinacy analysis and absolutely continuous spectra for Sturm-Liouville equations with two singular endpoints [J].
Clemence, DP .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (01) :23-27
[6]  
Coddington N., 1955, THEORY ORDINARY DIFF
[7]   ON SUBORDINACY AND ANALYSIS OF THE SPECTRUM OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS [J].
GILBERT, DJ ;
PEARSON, DB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 128 (01) :30-56
[8]   Dimensional Hausdorff properties of singular continuous spectra [J].
Jitomirskaya, SY ;
Last, Y .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1765-1769
[9]  
KRUGER H, ARXIV07090127
[10]   Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs [J].
Kuchment, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22) :4887-4900