Machine-learning-assisted correction of correlated qubit errors in a topological code

被引:97
作者
Baireuther, P. [1 ]
O'Brien, T. E. [1 ]
Tarasinski, B. [2 ]
Beenakker, C. W. J. [1 ]
机构
[1] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[2] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
关键词
D O I
10.22331/q-2018-01-29-48
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fault-tolerant quantum computation requires an efficient means to detect and correct errors that accumulate in encoded quantum information. In the context of machine learning, neural networks are a promising new approach to quantum error correction. Here we show that a recurrent neural network can be trained, using only experimentally accessible data, to detect errors in a widely used topological code, the surface code, with a performance above that of the established minimum weight perfect matching (or "blossom") decoder. The performance gain is achieved because the neural network decoder can detect correlations between bit-flip (X) and phase-flip (Z) errors. The machine learning algorithm adapts to the physical system, hence no noise model is needed. The long short-term memory layers of the recurrent neural network maintain their performance over a large number of quantum error correction cycles, making it a practical decoder for forthcoming experimental realizations of the surface code.
引用
收藏
页数:10
相关论文
共 41 条
[1]  
Abadi M., 2015, PREPRINT
[2]  
[Anonymous], 1996, Neural Networks, DOI [10.1007/978-3-642-61068-4, DOI 10.1007/978-3-642-61068-4]
[3]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[4]   Optimal resources for topological two-dimensional stabilizer codes: Comparative study [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2007, 76 (01)
[5]  
Bravyi S. B.., ARXIVQUANTPH9811052
[6]   Efficient algorithms for maximum likelihood decoding in the surface code [J].
Bravyi, Sergey ;
Suchara, Martin ;
Vargo, Alexander .
PHYSICAL REVIEW A, 2014, 90 (03)
[7]  
Criger B., ARVIX170902154
[8]  
Delfosse N, 2014, IEEE INT SYMP INFO, P1071, DOI 10.1109/ISIT.2014.6874997
[9]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[10]   Fast Decoders for Topological Quantum Codes [J].
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2010, 104 (05)