Screening of Therapeutic Agents for COVID-19 Using Machine Learning and Ensemble Docking Studies

被引:63
作者
Batra, Rohit [1 ]
Chan, Henry [1 ,2 ]
Kamath, Ganesh [3 ]
Ramprasad, Rampi [4 ]
Cherukara, Mathew J. [1 ]
Sankaranarayanan, Subramanian K. R. S. [1 ,2 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[3] Dalzielfiver LLC, El Sobrante, CA 94803 USA
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
CORONAVIRUS SARS-COV-2; DRUG;
D O I
10.1021/acs.jpclett.0c02278
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current pandemic demands a search for therapeutic agents against the novel coronavirus SARS-CoV-2. Here, we present an efficient computational strategy that combines machine learning (ML)-based models and high-fidelity ensemble docking studies to enable rapid screening of possible therapeutic ligands. Targeting the binding affinity of molecules for either the isolated SARS-CoV-2 S-protein at its host receptor region or the S-protein:human ACE2 interface complex, we screen ligands from drug and biomolecule data sets that can potentially limit and/or disrupt the host-virus interactions. Top scoring one hundred eighty-seven ligands (with 75 approved by the Food and Drug Administration) are further validated by all atom docking studies. Important molecular descriptors ((2)chi(n), topological surface area, and ring count) and promising chemical fragments (oxolane, hydroxy, and imidazole) are identified to guide future experiments. Overall, this work expands our knowledge of small-molecule treatment against COVID-19 and provides a general screening pathway (combining quick ML models with expensive high-fidelity simulations) for targeting several chemical/biochemical problems.
引用
收藏
页码:7058 / 7065
页数:8
相关论文
共 24 条
[1]   Presumed Asymptomatic Carrier Transmission of COVID-19 [J].
Bai, Yan ;
Yao, Lingsheng ;
Wei, Tao ;
Tian, Fei ;
Jin, Dong-Yan ;
Chen, Lijuan ;
Wang, Meiyun .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (14) :1406-1407
[2]   Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model [J].
Beck, Bo Ram ;
Shin, Bonggun ;
Choi, Yoonjung ;
Park, Sungsoo ;
Kang, Keunsoo .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :784-790
[3]  
Bung N., 2020, NOVO DESIGN NEW CHEM
[4]   On the Art of Compiling and Using 'Drug-Like' Chemical Fragment Spaces [J].
Degen, Joerg ;
Wegscheid-Gerlach, Christof ;
Zaliani, Andrea ;
Rarey, Matthias .
CHEMMEDCHEM, 2008, 3 (10) :1503-1507
[5]   BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology [J].
Gilson, Michael K. ;
Liu, Tiqing ;
Baitaluk, Michael ;
Nicola, George ;
Hwang, Linda ;
Chong, Jenny .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1045-D1053
[6]   Return of the Coronavirus: 2019-nCoV [J].
Gralinski, Lisa E. ;
Menachery, Vineet D. .
VIRUSES-BASEL, 2020, 12 (02)
[7]   Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings [J].
Lipinski, CA ;
Lombardo, F ;
Dominy, BW ;
Feeney, PJ .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 23 (1-3) :3-25
[8]  
Lipinski Christopher A, 2004, Drug Discov Today Technol, V1, P337, DOI 10.1016/j.ddtec.2004.11.007
[9]  
Lowell HH., 1991, Reviews in Computational Chemistry, V5, P367
[10]  
Mardirossian N., 2020, ARXIV200408725