Rank properties of exposed positive maps

被引:13
作者
Marciniak, Marcin [1 ]
机构
[1] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
关键词
positive maps; extremal; exposed; completely positive; LINEAR-MAPS;
D O I
10.1080/03081087.2012.721360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K and N be finite dimensional Hilbert spaces and let 3 denote the cone of all positive linear maps acting from 3(C) into 3(R). We show that each map of the form phi(X)= AXA* or phi(X) = AX(T)A* is an exposed point of beta. It is done by careful analysis of rank properties of these maps.
引用
收藏
页码:970 / 975
页数:6
相关论文
共 21 条
[1]   Optimal entanglement criterion for mixed quantum states [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[2]   POSITIVE SEMIDEFINITE BIQUADRATIC FORMS [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (02) :95-100
[3]  
Chrusciniski D., 2012, J PHYS A, V45
[4]  
Chrusciniski D., 2012, PREPRINT
[5]  
Chruscinski D., 2011, PREPRINT
[6]  
Eom MH, 2000, MATH SCAND, V86, P130
[7]   A class of atomic positive linear maps in matrix algebras [J].
Ha, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 359 :277-290
[8]   Entanglement Witnesses Arising from Exposed Positive Linear Maps [J].
Ha, Kil-Chan ;
Kye, Seung-Hyeok .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2011, 18 (04) :323-337
[9]   A new criterion for indecomposability of positive maps [J].
Hall, William .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (45) :14119-14131
[10]   LINEAR TRANSFORMATIONS WHICH PRESERVE OR DECREASE RANK [J].
LOEWY, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 :151-161