On vertex-transitive graphs of odd prime-power order

被引:15
作者
Feng, YQ [1 ]
机构
[1] Northern Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
vertex-transitive graph; Cayley graph; non-Cayley number;
D O I
10.1016/S0012-365X(01)00348-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Marusic (Ann. Discrete Math. 27 (1985) 115) proved that all vertex-transitive graphs of order p(k) are Cayley graphs for each prime p and k = 1, 2, or 3, and constructed a non-Cayley vertex-transitive graph of order p(k) and valency 2p + 2 for each prime p greater than or equal to 5 and k greater than or equal to 4. McKay and Praeger (J. Austral. Math. Soc. (A) 56 (1994) 53) gave an alternative construction of a non-Cayley vertex-transitive graph of order p(k) for each prime p greater than or equal to, 3 and k greater than or equal to 4. In this paper it is proved that, for each positive integer k and each prime p greater than or equal to 3, a vertex-transitive graph of order p(k) with valency less than 2p + 2 is a Cayley graph. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:265 / 269
页数:5
相关论文
共 23 条
[1]   A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02) :307-318
[2]  
Harary F., 1969, GRAPH THEORY
[3]  
Hassani A., 1998, J COMBIN MATH COMBIN, V28, P187
[4]  
Huppert B., 1967, Endliche Gruppen I, VI
[5]   IMPRIMITIVE REPRESENTATIONS OF SL(2, 2(KAPPA)) [J].
MARUSIC, D ;
SCAPELLATO, R .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 58 (01) :46-57
[6]   CLASSIFYING VERTEX-TRANSITIVE GRAPHS WHOSE ORDER IS A PRODUCT OF 2 PRIMES [J].
MARUSIC, D ;
SCAPELLATO, R .
COMBINATORICA, 1994, 14 (02) :187-201
[7]   CHARACTERIZING VERTEX-TRANSITIVE PQ-GRAPHS WITH AN IMPRIMITIVE AUTOMORPHISM SUBGROUP [J].
MARUSIC, D ;
SCAPELLATO, R .
JOURNAL OF GRAPH THEORY, 1992, 16 (04) :375-387
[8]  
Marusic D., 1983, ARS COMBINATORIA, V16B, P297
[9]  
MARUSIC D, 1995, ALGEBRA C, V2, P295
[10]  
Marusic D., 1985, ANN DISCRETE MATH, V27, P115