DIRECTFN: Fully Numerical Algorithms for High Precision Computation of Singular Integrals in Galerkin SIE Methods

被引:66
作者
Polimeridis, Athanasios G. [1 ]
Vipiana, Francesca [2 ,3 ]
Mosig, Juan R. [4 ]
Wilton, Donald R. [5 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Politecn Torino, Antenna & EMC Lab LACE, I-10129 Turin, Italy
[3] ISMB, Antenna & EMC Lab LACE, I-10138 Turin, Italy
[4] Ecole Polytech Fed Lausanne, Lab Electromagnet & Acoust LEMA, CH-1015 Lausanne, Switzerland
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77096 USA
基金
瑞士国家科学基金会;
关键词
Electromagnetic scattering; method of moments (MoM); numerical analysis; singular integrals; surface integral equations; HIGHER-ORDER METHOD; LINEAR SOURCE DISTRIBUTIONS; BOUNDARY-ELEMENT INTEGRALS; IMPEDANCE MATRIX-ELEMENTS; POTENTIAL INTEGRALS; SURFACE INTEGRALS; ELECTROMAGNETIC SCATTERING; HYPERSINGULAR INTEGRALS; EQUATION FORMULATIONS; PLANAR TRIANGLES;
D O I
10.1109/TAP.2013.2246854
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fully numerical schemes are presented for high precision computations of the four-dimensional integrals arising in Galerkin surface integral equation formulations. More specifically, the focal point of this paper is the singular integrals for coincident, edge adjacent and vertex adjacent planar and curvilinear triangular elements. The proposed method, dubbed as DIRECTFN, utilizes a series of variable transformations, able to cancel both weak (1/R) and strong (1/R-2) singularities. In addition, appropriate interchanges in the order of the associated one-dimensional integrations result in further regularization of the overall integrals. The final integrands are analytic functions with respect to all variables involved and, hence, the integrals can be efficiently evaluated by means of simple Gaussian integration. The accuracy and convergence properties of the new schemes are demonstrated by evaluating representative weakly singular and strongly singular integrals over planar and quadratic curvilinear elements.
引用
收藏
页码:3112 / 3122
页数:11
相关论文
共 66 条
[31]   Adaptive singularity cancellation for efficient treatment of near-singular and near-hypersingular integrals in surface integral equation formulations [J].
Ismatullah ;
Eibert, Thomas F. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (01) :274-278
[32]   Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles [J].
Järvenpää, S ;
Taskinen, M ;
Ylä-Oijala, P .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (01) :42-49
[33]   Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra [J].
Järvenpää, S ;
Taskinen, M ;
Ylä-Oijala, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (08) :1149-1165
[34]   Higher order hierarchical Legendre basis functions for electromagnetic modeling [J].
Jorgensen, E ;
Volakis, JL ;
Meincke, P ;
Breinbjerg, O .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (11) :2985-2995
[35]   Analytical Shape Derivatives of the MFIE System Matrix Discretized With RWG Functions [J].
Kataja, Juhani ;
Polimeridis, Athanasios G. ;
Mosig, Juan R. ;
Yla-Oijala, Pasi .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (02) :985-988
[36]   A Practical Implementation and Comparative Assessment of the Radial-Angular-Transform Singularity Cancellation Method [J].
Kaur, Guneet ;
Yilmaz, Ali E. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (12) :4634-4642
[37]   Numerical evaluation of singular and near-singular potential integrals [J].
Khayat, MA ;
Wilton, DR .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (10) :3180-3190
[38]  
Klees R., 1993, J GEODESY, V70, P781
[39]   ON THE ANALYTIC-NUMERIC TREATMENT OF WEAKLY SINGULAR INTEGRALS ON ARBITRARY POLYGONAL DOMAINS [J].
Lopez-Pena, S. ;
Polimeridis, A. G. ;
Mosig, J. R. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 117 :339-355
[40]  
Notaros BM, 1997, INT J NUMER MODEL EL, V10, P177, DOI 10.1002/(SICI)1099-1204(199705)10:3<177::AID-JNM270>3.0.CO