DIRECTFN: Fully Numerical Algorithms for High Precision Computation of Singular Integrals in Galerkin SIE Methods

被引:66
作者
Polimeridis, Athanasios G. [1 ]
Vipiana, Francesca [2 ,3 ]
Mosig, Juan R. [4 ]
Wilton, Donald R. [5 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Politecn Torino, Antenna & EMC Lab LACE, I-10129 Turin, Italy
[3] ISMB, Antenna & EMC Lab LACE, I-10138 Turin, Italy
[4] Ecole Polytech Fed Lausanne, Lab Electromagnet & Acoust LEMA, CH-1015 Lausanne, Switzerland
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77096 USA
基金
瑞士国家科学基金会;
关键词
Electromagnetic scattering; method of moments (MoM); numerical analysis; singular integrals; surface integral equations; HIGHER-ORDER METHOD; LINEAR SOURCE DISTRIBUTIONS; BOUNDARY-ELEMENT INTEGRALS; IMPEDANCE MATRIX-ELEMENTS; POTENTIAL INTEGRALS; SURFACE INTEGRALS; ELECTROMAGNETIC SCATTERING; HYPERSINGULAR INTEGRALS; EQUATION FORMULATIONS; PLANAR TRIANGLES;
D O I
10.1109/TAP.2013.2246854
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fully numerical schemes are presented for high precision computations of the four-dimensional integrals arising in Galerkin surface integral equation formulations. More specifically, the focal point of this paper is the singular integrals for coincident, edge adjacent and vertex adjacent planar and curvilinear triangular elements. The proposed method, dubbed as DIRECTFN, utilizes a series of variable transformations, able to cancel both weak (1/R) and strong (1/R-2) singularities. In addition, appropriate interchanges in the order of the associated one-dimensional integrations result in further regularization of the overall integrals. The final integrands are analytic functions with respect to all variables involved and, hence, the integrals can be efficiently evaluated by means of simple Gaussian integration. The accuracy and convergence properties of the new schemes are demonstrated by evaluating representative weakly singular and strongly singular integrals over planar and quadratic curvilinear elements.
引用
收藏
页码:3112 / 3122
页数:11
相关论文
共 66 条
[21]   Higher order interpolatory vector bases for computational electromagnetics [J].
Graglia, RD ;
Wilton, DR ;
Peterson, AF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :329-342
[22]   Machine precision evaluation of singular and nearly singular potential integrals by use of Gauss quadrature formulas for rational functions [J].
Graglia, Roberto D. ;
Lombardi, Guido .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (04) :981-998
[23]   Direct evaluation of hypersingular Galerkin surface integrals [J].
Gray, LJ ;
Glaeser, JM ;
Kaplan, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1534-1556
[24]  
GRAY LJ, 2006, ELECT J BOUNDARY ELE, V4, P105
[25]   Singularity of the magnetic-field integral equation and its extraction [J].
Gürel, L ;
Ergül, Ö .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4 :229-232
[26]   Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions [J].
Hanninen, I. ;
Taskinen, M. ;
Sarvas, J. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 63 :243-278
[27]  
Herschlein A., 2002, Applied Computational Electromagnetics Society Journal, V17, P63
[28]  
Hodges RE, 1997, MICROW OPT TECHN LET, V14, P9, DOI 10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO
[29]  
2-P
[30]   Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics [J].
Hsiao, GC ;
Kleinman, RE .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :316-328