DIRECTFN: Fully Numerical Algorithms for High Precision Computation of Singular Integrals in Galerkin SIE Methods

被引:66
作者
Polimeridis, Athanasios G. [1 ]
Vipiana, Francesca [2 ,3 ]
Mosig, Juan R. [4 ]
Wilton, Donald R. [5 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Politecn Torino, Antenna & EMC Lab LACE, I-10129 Turin, Italy
[3] ISMB, Antenna & EMC Lab LACE, I-10138 Turin, Italy
[4] Ecole Polytech Fed Lausanne, Lab Electromagnet & Acoust LEMA, CH-1015 Lausanne, Switzerland
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77096 USA
基金
瑞士国家科学基金会;
关键词
Electromagnetic scattering; method of moments (MoM); numerical analysis; singular integrals; surface integral equations; HIGHER-ORDER METHOD; LINEAR SOURCE DISTRIBUTIONS; BOUNDARY-ELEMENT INTEGRALS; IMPEDANCE MATRIX-ELEMENTS; POTENTIAL INTEGRALS; SURFACE INTEGRALS; ELECTROMAGNETIC SCATTERING; HYPERSINGULAR INTEGRALS; EQUATION FORMULATIONS; PLANAR TRIANGLES;
D O I
10.1109/TAP.2013.2246854
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fully numerical schemes are presented for high precision computations of the four-dimensional integrals arising in Galerkin surface integral equation formulations. More specifically, the focal point of this paper is the singular integrals for coincident, edge adjacent and vertex adjacent planar and curvilinear triangular elements. The proposed method, dubbed as DIRECTFN, utilizes a series of variable transformations, able to cancel both weak (1/R) and strong (1/R-2) singularities. In addition, appropriate interchanges in the order of the associated one-dimensional integrations result in further regularization of the overall integrals. The final integrands are analytic functions with respect to all variables involved and, hence, the integrals can be efficiently evaluated by means of simple Gaussian integration. The accuracy and convergence properties of the new schemes are demonstrated by evaluating representative weakly singular and strongly singular integrals over planar and quadratic curvilinear elements.
引用
收藏
页码:3112 / 3122
页数:11
相关论文
共 66 条
[1]   Integration of singular Galerkin-type boundary element integrals for 3D elasticity problems [J].
Andra, H ;
Schnack, E .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :143-165
[2]   A multiplicative Calderon preconditioner for the electric field integral equation [J].
Andriulli, Francesco P. ;
Cools, Kristof ;
Bagci, Hakan ;
Olyslager, Femke ;
Buffa, Annalisa ;
Christiansen, Snorre ;
Michielssen, Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) :2398-2412
[3]  
[Anonymous], INTEGRAL EQUATION ME
[4]   On the evaluation of the double surface integrals arising in the application of the boundary integral method to 3-D problems [J].
Arcioni, P ;
Bressan, M ;
Perregrini, L .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (03) :436-439
[5]   Calculation of the Impedance Matrix Inner Integral to Prescribed Precision [J].
Asvestas, John S. ;
Yankovich, Stephen Paul ;
Allen, Oliver Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (02) :479-487
[6]   An accurate method for the calculation of singular integrals arising in time-domain integral equation analysis of electromagnetic scattering [J].
Bluck, MJ ;
Pocock, MD ;
Walker, SP .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (12) :1793-1798
[7]  
Buffa A, 2003, LECT NOTES COMP SCI, V31, P83
[8]   A dual finite element complex on the barycentric refinement [J].
Buffa, Annalisa ;
Christiansen, Snorre H. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1743-1769
[9]   Singularity treatment and high-order RWG basis functions for integral equations of electromagnetic scattering [J].
Cai, W ;
Yu, YJ ;
Yuan, XC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (01) :31-47
[10]   THEORETICAL AND NUMERICAL TREATMENT OF SURFACE INTEGRALS INVOLVING THE FREE-SPACE GREENS-FUNCTION [J].
CAORSI, S ;
MORENO, D ;
SIDOTI, F .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (09) :1296-1301