Irrotational Blowup of the Solution to Compressible Euler Equation

被引:23
作者
Suzuki, Takashi [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Syst Innovat, Div Math Sci, Toyonaka, Osaka 5608531, Japan
关键词
Compressible Euler equation; Blowup; Irrotational fluid; Defect energy; SMOOTH SOLUTIONS; SINGULARITIES;
D O I
10.1007/s00021-012-0116-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Compressible Euler equation is studied. First, we examine the validity of physical laws such as the conservations of total mass and energy and also the decay of total pressure. Then we show the non-existence of global-in-time irrotational solution with positive mass.
引用
收藏
页码:617 / 633
页数:17
相关论文
共 11 条
[1]  
Acheson D. J., 1990, ELEMENTARY FLUID DYN, DOI [10.1121/1.400751, DOI 10.1121/1.400751]
[2]  
[Anonymous], 1986, Japan J. Appl. Math, DOI DOI 10.1007/BF03167100
[3]   GLOBAL SOLUTION FOR AN INITIAL BOUNDARY VALUE PROBLEM OF A QUASILINEAR HYPERBOLIC SYSTEM [J].
NISHIDA, T .
PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (07) :642-&
[4]   SOLUTIONS IN LARGE FOR SOME NONLINEAR HYPERBOLIC CONSERVATION LAWS [J].
NISHIDA, T ;
SMOLLER, JA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (02) :183-200
[5]  
Perthame B., 2002, Kinetic Formulation of conservation laws
[6]   FORMATION OF SINGULARITIES IN 3-DIMENSIONAL COMPRESSIBLE FLUIDS [J].
SIDERIS, TC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :475-485
[9]  
Smoller J., 1982, SHOCK WAVES REACTION
[10]  
Xin ZP, 1998, COMMUN PUR APPL MATH, V51, P229, DOI 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO