In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy

被引:94
作者
Gschrey, M. [1 ]
Gericke, F. [1 ]
Schuessler, A. [1 ]
Schmidt, R. [1 ]
Schulze, J. -H. [1 ]
Heindel, T. [1 ]
Rodt, S. [1 ]
Strittmatter, A. [1 ]
Reitzenstein, S. [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
关键词
Semiconducting indium gallium arsenide - Cathodoluminescence - Electron beams - Gallium alloys - Semiconductor alloys - Temperature - Photoluminescence spectroscopy - Indium alloys - Nanocrystals - Semiconductor quantum dots;
D O I
10.1063/1.4812343
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on the deterministic fabrication of sub-mu m mesa-structures containing single quantum dots (QDs) by in situ electron-beam lithography. The fabrication method is based on a two-step lithography process: After detecting the position and spectral features of single InGaAs QDs by cathodoluminescence (CL) spectroscopy, circular sub-mu m mesa-structures are defined by high-resolution electron-beam lithography and subsequent etching. Micro-photoluminescence spectroscopy demonstrates the high optical quality of the single-QD mesa-structures with emission linewidths below 15 mu eV and g((2))(0) = 0.04. Our lithography method has an alignment precision better than 100 nm which paves the way for a fully deterministic device technology using in situ CL lithography. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 16 条
[1]   Quantum efficiency and oscillator strength of site-controlled InAs quantum dots [J].
Albert, F. ;
Stobbe, S. ;
Schneider, C. ;
Heindel, T. ;
Reitzenstein, S. ;
Hoefling, S. ;
Lodahl, P. ;
Worschech, L. ;
Forchel, A. .
APPLIED PHYSICS LETTERS, 2010, 96 (15)
[2]   Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots -: art. no. 041308 [J].
Bayer, M ;
Forchel, A .
PHYSICAL REVIEW B, 2002, 65 (04) :1-4
[3]   A single-step electron beam lithography of buried nanostructures using cathodoluminescence imaging and low temperature [J].
Donatini, Fabrice ;
Dang, Le Si .
NANOTECHNOLOGY, 2010, 21 (37)
[4]   Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography [J].
Dousse, A. ;
Lanco, L. ;
Suffczynski, J. ;
Semenova, E. ;
Miard, A. ;
Lemaitre, A. ;
Sagnes, I. ;
Roblin, C. ;
Bloch, J. ;
Senellart, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[5]   Triggered Indistinguishable Single Photons with Narrow Line Widths from Site-Controlled Quantum Dots [J].
Joens, K. D. ;
Atkinson, P. ;
Mueller, M. ;
Heldmaier, M. ;
Ulrich, S. M. ;
Schmidt, O. G. ;
Michler, P. .
NANO LETTERS, 2013, 13 (01) :126-130
[6]   Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging [J].
Kojima, T. ;
Kojima, K. ;
Asano, T. ;
Noda, S. .
APPLIED PHYSICS LETTERS, 2013, 102 (01)
[7]   Semiconductor Quantum Dot-Microcavities for Quantum Optics in Solid State [J].
Reitzenstein, Stephan .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (06) :1733-1746
[8]   Correlation of structural and few-particle properties of self-organized InAs/GaAs quantum dots -: art. no. 155325 [J].
Rodt, S ;
Schliwa, A ;
Pötschke, K ;
Guffarth, F ;
Bimberg, D .
PHYSICAL REVIEW B, 2005, 71 (15)
[9]  
Schmidt O G., 2007, Lateral Alignment of Quantum Dots
[10]   Lithographic alignment to site-controlled quantum dots for device integration [J].
Schneider, C. ;
Strauss, M. ;
Suenner, T. ;
Huggenberger, A. ;
Wiener, D. ;
Reitzenstein, S. ;
Kamp, M. ;
Hoefling, S. ;
Forchel, A. .
APPLIED PHYSICS LETTERS, 2008, 92 (18)