Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems

被引:57
作者
Kefi, Sonia [1 ]
Rietkerk, Max [1 ]
Katul, Gabriel G. [2 ]
机构
[1] Univ Utrecht, Copernicus Inst, Dept Environm Sci, NL-3508 TC Utrecht, Netherlands
[2] Duke Univ, Nicholas Sch Environm & Earth Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Arid ecosystems; Spatial organization; Climate change; Increased CO2; Desertification; Scale-dependent feedback;
D O I
10.1016/j.tpb.2008.09.004
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Arid ecosystems are expected to be among the ecosystems most sensitive to climate change. Here, we explore via model calculations how regular vegetation patterns, widely observed in arid ecosystems, respond to projected climatic shifts as provided by general circulation model output. In our model, the photosynthesis and respiration terms are explicitly linked to physiological attributes of the plants and are forced with the primary climatic drivers: atmospheric CO2, air temperature, and precipitation. Under future climate scenarios, our simulations show that the system's fate depends on whether the enhancements to photosynthesis due to elevated atmospheric CO2 outweigh the increases in respiration due to higher air temperatures and the increases in water stress due to lower rainfall. A scalar measure is proposed to quantify this balance between the changes in the three climate drivers. Our model results suggest that knowing how the three primary climate drivers are evolving may provide hints as to whether the ecosystem is approaching desertification. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:332 / 344
页数:13
相关论文
共 66 条
[1]  
[Anonymous], 1999, Dispersal Biology of Desert Plants
[2]   Global synthesis of leaf area index observations: implications for ecological and remote sensing studies [J].
Asner, GP ;
Scurlock, JMO ;
Hicke, JA .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2003, 12 (03) :191-205
[3]   Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems [J].
Barbier, N ;
Couteron, P ;
Lejoly, J ;
Deblauwe, V ;
Lejeune, O .
JOURNAL OF ECOLOGY, 2006, 94 (03) :537-547
[4]   Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands [J].
Butnor, JR ;
Johnsen, KH ;
Oren, R ;
Katul, GG .
GLOBAL CHANGE BIOLOGY, 2003, 9 (06) :849-861
[5]  
Clark KL, 1999, ECOL APPL, V9, P936, DOI 10.1890/1051-0761(1999)009[0936:ECONEO]2.0.CO
[6]  
2
[7]   Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].
Cox, PM ;
Betts, RA ;
Jones, CD ;
Spall, SA ;
Totterdell, IJ .
NATURE, 2000, 408 (6809) :184-187
[8]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[9]   Vegetation patterns induced by random climate fluctuations [J].
D'Odorico, Paolo ;
Laio, Francesco ;
Ridolfi, Luca .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (19)
[10]   On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems [J].
D'Odorico, Paolo ;
Caylor, Kelly ;
Okin, Gregory S. ;
Scanlon, Todd M. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2007, 112 (G4)