Mould expansions for the saddle-node and resurgence monomials

被引:21
作者
Sauzin, David [1 ]
机构
[1] CNRS, Inst Mecan Celeste, 77 Ave Denfert Rochereau, F-75014 Paris, France
来源
RENORMALIZATION AND GALOIS THEORIES | 2009年 / 15卷
关键词
D O I
10.4171/073-1/3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is an introduction to some aspects of Ecalle's mould calculus, a powerful combinatorial tool which yields surprisingly explicit formulas for the normalising series attached to an analytic germ of singular vector field or of map. This is illustrated on the case of the saddle-node, a two-dimensional vector field which is formally conjugate to Euler's vector field x(2) partial derivative/partial derivative x + (x + y) partial derivative/partial derivative y, and for which the formal normalisation is shown to be resurgent in 1/x. Resurgence monomials adapted to alien calculus are also described as another application of mould calculus.
引用
收藏
页码:83 / +
页数:2
相关论文
共 16 条
[1]  
[Anonymous], 1984, Publ. Math. Orsay, P84
[2]  
[Anonymous], 2004, ANN FAC SCI TOULOUSE
[3]   Adiabatic invariant of the harmonic oscillator, complex matching and resurgence [J].
Bonet, C ;
Sauzin, D ;
Seara, T ;
Valencia, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1335-1360
[4]  
Candelpergher B., 1993, ACTUALITES MATH
[5]  
ECALLE J, 1993, NATO ADV SCI INST SE, V408, P75
[6]  
Ecalle J, 2005, CONTEMP MATH, V373, P207
[7]   NONGEOMETRIC MODELS OF SINGULARITIES [J].
ECALLE, J .
ANNALES DE L INSTITUT FOURIER, 1992, 42 (1-2) :73-164
[8]  
ECALLE J, 2004, ANN FAC SCI TOULOUSE, V13, P683
[9]  
Ecalle J., 2003, J. Theor. Nombres Bordeaux, V15, P411, DOI 10.5802/jtnb.410
[10]  
Ecalle J., 1981, PUBL MATH ORSAY U PA, VII, P248