Periodic solutions to the self-dual Ginzburg-Landau equations

被引:1
作者
Almog, Y [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
D O I
10.1017/S0956792599003757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The structure of periodic solutions to the Ginzburg-Landau equations in IR2 is studied in the critical case, when the equations may be reduced to the first-order Bogomolnyi equations. We prove the existence of periodic solutions when the area of the fundamental cell is greater than 4 pi M, M being the overall order of the vortices within the fundamental cell (the topological invariant). For smaller fundamental cell areas, it is shown that no periodic solution exists. It is then proved that as the boundaries of the fundamental cell go to infinity, the periodic solutions tend to Taubes' arbitrary N-vortex solution.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 13 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]  
Almog Y, 1998, ASYMPTOTIC ANAL, V17, P267
[3]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[4]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[5]  
CHAPMAN SJ, 1994, EUR J APPL MATH, V5, P449
[6]   DIRECT OBSERVATION OF INDIVIDUAL FLUX LINES IN TYPE 2 SUPERCONDUCTORS [J].
ESSMANN, U ;
TRAUBLE, H .
PHYSICS LETTERS A, 1967, A 24 (10) :526-&
[7]   CRITICAL-POINTS OF INFINITE-ORDER IN CHARGE-DENSITY-WAVE SYSTEMS AND IN SUPERCONDUCTORS [J].
JACOBS, AE ;
MUKAMEL, D ;
WALKER, MB .
PHYSICAL REVIEW B, 1981, 24 (09) :5195-5203
[8]  
KLEINER WH, 1964, PHYS REV A-GEN PHYS, V133, P1226
[9]   YANG-MILLS-HIGGS THEORY ON A COMPACT RIEMANN SURFACE [J].
NOGUCHI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (10) :2343-2346
[10]   EXISTENCE AND BIFURCATION THEOREMS FOR GINZBURG-LANDAU EQUATIONS [J].
ODEH, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) :2351-+