Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging

被引:55
作者
Koay, CG
Carew, JD
Alexander, AL
Basser, PJ
Meyerand, ME
机构
[1] NICHD, STBB, LIMB, NIH, Bethesda, MD 20892 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Med Phys, Madison, WI 53706 USA
关键词
diffusion tensor imaging; negative diffusivity; fractional anisotropy; constrained optimization; diffusion tensor estimation;
D O I
10.1002/mrm.20832
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The diffusion tensor is typically assumed to be positive definite. However, noise in the measurements may cause the eigenvalues of the tensor estimate to be negative, thereby violating this assumption. Negative eigenvalues in diffusion tensor imaging (DTI) data occur predominately in regions of high anisotropy and may cause the fractional anisotropy (FA) to exceed unity. Two constrained least squares methods for eliminating negative eigenvalues are explored. These methods, the constrained linear least squares method (CLLS) and the constrained nonlinear least squares method (CNLS), are compared with other commonly used algebraic constrained methods. The CLLS tensor estimator can be shown to be equivalent to the linear least squares (LLS) tensor estimator when the LLS tensor estimate is positive definite. Similarly, the CNLS tensor estimator can be shown to be equivalent to the nonlinear least squares (NLS) tensor estimator when the NLS tensor estimate is positive definite. The constrained least squares methods for eliminating negative eigenvalues are evaluated with both simulations and in vivo human brain DTI data. Simulation results show that the CNLS method is, in terms of mean squared error for estimating trace and FA, the most effective method for correcting negative eigenvalues.
引用
收藏
页码:930 / 936
页数:7
相关论文
共 20 条
  • [1] Theoretical analysis of the effects of noise on diffusion tensor imaging
    Anderson, AW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (06) : 1174 - 1188
  • [2] [Anonymous], 1988, Nonlinear regression analysis and its applications
  • [3] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [4] Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
    Basser, PJ
    [J]. NMR IN BIOMEDICINE, 1995, 8 (7-8) : 333 - 344
  • [5] Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
  • [6] RESTORE: Robust estimation of tensors by outlier rejection
    Chang, LC
    Jones, DK
    Pierpaoli, C
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) : 1088 - 1095
  • [7] Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results
    Conturo, TE
    McKinstry, RC
    Akbudak, E
    Robinson, BH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (03) : 399 - 412
  • [8] Clinical applications of diffusion tensor imaging
    Dong, Q
    Welsh, RC
    Chenevert, TL
    Carlos, RC
    Maly-Sundgren, P
    Gomez-Hassan, DM
    Mukherji, SK
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2004, 19 (01) : 6 - 18
  • [9] Golub G. H., 1996, MATRIX COMPUTATIONS
  • [10] Analytical computation of the eigenvalues and eigenvectors in DT-MRI
    Hasan, KM
    Basser, PJ
    Parker, DL
    Alexander, AL
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2001, 152 (01) : 41 - 47