AN IMPROVEMENT OF CONVERGENCE RATE ESTIMATES IN THE CENTRAL LIMIT THEOREM UNDER ABSENCE OF MOMENTS HIGHER THAN THE SECOND

被引:4
作者
Korolev, V. Yu. [1 ,2 ]
Popov, S. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Informat Problems, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
central limit theorem; convergence rate estimate; absolute constant;
D O I
10.1137/S0040585X97985704
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Upper bounds of the absolute constant in the convergence rate estimate in the central limit theorem are sharpened in terms of truncated moments. It is shown that the absolute constant in the Osipov inequality does not exceed 2.011.
引用
收藏
页码:682 / U215
页数:10
相关论文
共 14 条
[1]  
[Anonymous], MODERN THEORY SUMMAT
[2]  
[Anonymous], AUSTR J STAT
[3]  
Bhattacharya R.N., 1976, Normal Approximation and Asymptotic Expansions
[4]   A non-uniform Berry-Esseen bound via Stein's method [J].
Chen, LHY ;
Shao, QM .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (02) :236-254
[5]   ON BERRY-ESSEEN THEOREM [J].
FELLER, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 10 (03) :261-&
[6]   THE EXTREMA OF THE EXPECTED VALUE OF A FUNCTION OF INDEPENDENT RANDOM VARIABLES [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (02) :268-275
[7]   An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums [J].
Korolev, Victor ;
Shevtsova, Irina .
SCANDINAVIAN ACTUARIAL JOURNAL, 2012, (02) :81-105
[8]  
NEFEDOVA Y.U. S., THEORY PROB IN PRESS
[9]   REFINEMENT OF LINDEBERGS THEOREM [J].
OSIPOV, LV .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1966, 11 (02) :299-&
[10]  
PADITZ L., 1986, WISS Z HOCHSCHULE VE, V33, P399