3-D RPET-NET: Development of a 3-D PET Imaging Convolutional Neural Network for Radiomics Analysis and Outcome Prediction

被引:34
作者
Amyar, A. [1 ,2 ,3 ]
Ruan, S. [1 ,2 ]
Gardin, I. [1 ,2 ,3 ]
Chatelain, C. [1 ,2 ]
Decazes, P. [1 ,2 ,3 ]
Modzelewski, R. [1 ,2 ,3 ]
机构
[1] Univ Rouen, LITIS EA4108, F-76800 Rouen, France
[2] INSA Rouen, F-76800 Rouen, France
[3] Henri Becquerel Ctr, Nucl Med Dept, F-76038 Rouen, France
关键词
Deep learning; esophageal cancer; machine learning (ML); positron emission tomography (PET); ESOPHAGEAL CANCER; SEGMENTATION;
D O I
10.1109/TRPMS.2019.2896399
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics is now widely used to improve the prediction of treatment response and patient prognosis in oncology. In this paper, we propose an end-to-end prediction model based on a 3-D convolutional neural network (CNN), called 3-D RPET-NET, that extracts 3-D image features through four layers. Our model was evaluated for its ability to predict the response to radio-chemotherapy in 97 patients with esophageal cancer from positron emission tomography (PET) images. The accuracy of the model was compared to five other methods proposed in the literature for PET images, based on 2-D CNN and random forest algorithms. The role of the volume of interest on the accuracy of 3-D RPET-NET was also evaluated using isotropic margins of 1-4 cm around the tumor volume. After segmentation of the lesion using a fixed threshold value of 40% of the maximum standard uptake value, the best accuracy of 3-D RPET-NET reached 72% and outperformed the other methods tested. We also showed that using an isotropic margin of 2 cm around the tumor volume improved the performances of 3-D RPET-NET to reach an accuracy of 75%.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 24 条
  • [1] Beyond imaging: The promise of radiomics
    Avanzo, Michele
    Stancanello, Joseph
    El Naqa, Issam
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 : 122 - 139
  • [2] Spotting L3 slice in CT scans using deep convolutional network and transfer learning
    Belharbi, Soufiane
    Chatelain, Clement
    Herault, Romain
    Adam, Sebastien
    Thureau, Sebastien
    Chastan, Mathieu
    Modzelewski, Romain
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 87 : 95 - 103
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Braman, Nathaniel M.
    Etesami, Maryam
    Prasanna, Prateek
    Dubchuk, Christina
    Gilmore, Hannah
    Tiwari, Pallavi
    Pletcha, Donna
    Madabhushi, Anant
    [J]. BREAST CANCER RESEARCH, 2017, 19
  • [5] Evaluation of PET volume segmentation methods: comparisons with expert manual delineations
    Dewalle-Vignion, Anne-Sophie
    Yeni, Nathanaelle
    Petyt, Gregory
    Verscheure, Leslie
    Huglo, Damien
    Beron, Amandine
    Adib, Salim
    Lion, Georges
    Vermandel, Maximilien
    [J]. NUCLEAR MEDICINE COMMUNICATIONS, 2012, 33 (01) : 34 - 42
  • [6] Nuclear imaging and target volumes for radiotherapy
    Dubray, B.
    Thureau, S.
    Nkhali, L.
    Modzelewski, R.
    Doyeux, K.
    Vera, P.
    [J]. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2013, 37 (05): : 198 - 202
  • [7] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [8] A review on segmentation of positron emission tomography images
    Foster, Brent
    Bagci, Ulas
    Mansoor, Awais
    Xu, Ziyue
    Mollura, Daniel J.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 50 : 76 - 96
  • [9] GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
    Frid-Adar, Maayan
    Diamant, Idit
    Klang, Eyal
    Amitai, Michal
    Goldberger, Jacob
    Greenspan, Hayit
    [J]. NEUROCOMPUTING, 2018, 321 : 321 - 331
  • [10] Characterization of PET/CT images using texture analysis: the past, the presenta... any future?
    Hatt, Mathieu
    Tixier, Florent
    Pierce, Larry
    Kinahan, Paul E.
    Le Rest, Catherine Cheze
    Visvikis, Dimitris
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (01) : 151 - 165