3-D RPET-NET: Development of a 3-D PET Imaging Convolutional Neural Network for Radiomics Analysis and Outcome Prediction

被引:35
作者
Amyar, A. [1 ,2 ,3 ]
Ruan, S. [1 ,2 ]
Gardin, I. [1 ,2 ,3 ]
Chatelain, C. [1 ,2 ]
Decazes, P. [1 ,2 ,3 ]
Modzelewski, R. [1 ,2 ,3 ]
机构
[1] Univ Rouen, LITIS EA4108, F-76800 Rouen, France
[2] INSA Rouen, F-76800 Rouen, France
[3] Henri Becquerel Ctr, Nucl Med Dept, F-76038 Rouen, France
关键词
Deep learning; esophageal cancer; machine learning (ML); positron emission tomography (PET); ESOPHAGEAL CANCER; SEGMENTATION;
D O I
10.1109/TRPMS.2019.2896399
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics is now widely used to improve the prediction of treatment response and patient prognosis in oncology. In this paper, we propose an end-to-end prediction model based on a 3-D convolutional neural network (CNN), called 3-D RPET-NET, that extracts 3-D image features through four layers. Our model was evaluated for its ability to predict the response to radio-chemotherapy in 97 patients with esophageal cancer from positron emission tomography (PET) images. The accuracy of the model was compared to five other methods proposed in the literature for PET images, based on 2-D CNN and random forest algorithms. The role of the volume of interest on the accuracy of 3-D RPET-NET was also evaluated using isotropic margins of 1-4 cm around the tumor volume. After segmentation of the lesion using a fixed threshold value of 40% of the maximum standard uptake value, the best accuracy of 3-D RPET-NET reached 72% and outperformed the other methods tested. We also showed that using an isotropic margin of 2 cm around the tumor volume improved the performances of 3-D RPET-NET to reach an accuracy of 75%.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 24 条
[1]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[2]   Spotting L3 slice in CT scans using deep convolutional network and transfer learning [J].
Belharbi, Soufiane ;
Chatelain, Clement ;
Herault, Romain ;
Adam, Sebastien ;
Thureau, Sebastien ;
Chastan, Mathieu ;
Modzelewski, Romain .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 87 :95-103
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[5]   Evaluation of PET volume segmentation methods: comparisons with expert manual delineations [J].
Dewalle-Vignion, Anne-Sophie ;
Yeni, Nathanaelle ;
Petyt, Gregory ;
Verscheure, Leslie ;
Huglo, Damien ;
Beron, Amandine ;
Adib, Salim ;
Lion, Georges ;
Vermandel, Maximilien .
NUCLEAR MEDICINE COMMUNICATIONS, 2012, 33 (01) :34-42
[6]   Nuclear imaging and target volumes for radiotherapy [J].
Dubray, B. ;
Thureau, S. ;
Nkhali, L. ;
Modzelewski, R. ;
Doyeux, K. ;
Vera, P. .
MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2013, 37 (05) :198-202
[7]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[8]   A review on segmentation of positron emission tomography images [J].
Foster, Brent ;
Bagci, Ulas ;
Mansoor, Awais ;
Xu, Ziyue ;
Mollura, Daniel J. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 50 :76-96
[9]   GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification [J].
Frid-Adar, Maayan ;
Diamant, Idit ;
Klang, Eyal ;
Amitai, Michal ;
Goldberger, Jacob ;
Greenspan, Hayit .
NEUROCOMPUTING, 2018, 321 :321-331
[10]   Characterization of PET/CT images using texture analysis: the past, the presenta... any future? [J].
Hatt, Mathieu ;
Tixier, Florent ;
Pierce, Larry ;
Kinahan, Paul E. ;
Le Rest, Catherine Cheze ;
Visvikis, Dimitris .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (01) :151-165