Micromagnetic simulations of first-order reversal curve (FORC) diagrams of framboidal greigite

被引:14
|
作者
Valdez-Grijalva, Miguel A. [1 ,5 ]
Nagy, Lesleis [2 ]
Muxworthy, Adrian R. [1 ]
Williams, Wyn [3 ]
Roberts, Andrew P. [4 ]
Heslop, David [4 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2BP, England
[2] Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92037 USA
[3] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3FE, Midlothian, Scotland
[4] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia
[5] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Environmental magnetism; Magnetic mineralogy and petrology; Rock and mineral magnetis; MAGNETIC PARTICLE-SYSTEMS; SINGLE-DOMAIN; MAGNETOCRYSTALLINE ANISOTROPY; PYRITE; SIZE;
D O I
10.1093/gji/ggaa241
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Greigite is a sensitive environmental indicator and occurs commonly in nature as magnetostatically interacting framboids. Until now only the magnetic response of isolated non-interacting greigite particles have been modelled micromagnetically. We present here hysteresis and first-order reversal curve (FORC) simulations for framboidal greigite (Fe3S4), and compare results to those for isolated particles of a similar size. We demonstrate that these magnetostatic interactions alter significantly the framboid FORC response compared to isolated particles, which makes the magnetic response similar to that of much larger (multidomain) grains. We also demonstrate that framboidal signals plot in different regions of a FORC diagram, which facilitates differentiation between framboidal and isolated grain signals. Given that large greigite crystals are rarely observed in microscopy studies of natural samples, we suggest that identification of multidomain-like FORC signals in samples known to contain abundant greigite could be interpreted as evidence for framboidal greigite.
引用
收藏
页码:1126 / 1134
页数:9
相关论文
共 50 条
  • [21] FIRST-ORDER REVERSAL CURVES (FORC) ANALYSIS OF MICROMETEORITES
    Van Ginneken, M.
    Muxworthy, A.
    Genge, M.
    METEORITICS & PLANETARY SCIENCE, 2013, 48 : A356 - A356
  • [22] Investigation of the switching characteristics in ferroelectrics by first-order reversal curve diagrams
    Stancu, A
    Mitoseriu, L
    Stoleriu, L
    Piazza, D
    Galassi, C
    Ricinschi, D
    Okuyama, M
    PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) : 226 - 229
  • [23] First-order reversal curve diagrams and thermal relaxation effects in magnetic particles
    Pike, CR
    Roberts, AP
    Verosub, KL
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2001, 145 (03) : 721 - 730
  • [24] Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets
    Yomogita, Takahiro
    Okamoto, Satoshi
    Kikuchi, Nobuaki
    Kitakami, Osamu
    Sepehri-Amin, Hossein
    Ohkubo, Tadakatsu
    Hono, Kazuhiro
    Akiya, Takahiro
    Hioki, Keiko
    Hattori, Atsushi
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 447 : 110 - 115
  • [25] High-frequency GMI hysteresis effect analysis by first-order reversal curve (FORC) method
    Arzuza, L. C. C.
    Beron, F.
    Pirota, K. R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 534
  • [26] First Order Reversal Curves (FORC) Diagrams of Co Nanowire Arrays
    Ciureanu, M.
    Beron, F.
    Ciureanu, P.
    Cochrane, R. W.
    Menard, D.
    Sklyuyev, A.
    Yelon, A.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (11) : 5725 - 5732
  • [27] Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams
    Samanifar, S.
    Kashi, M. Almasi
    Ramazani, A.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2018, 548 : 72 - 74
  • [28] doFORC tool for calculating first-order reversal curve diagrams of noisy scattered data
    Cimpoesu, Dorin
    Dumitru, Ioan
    Stancu, Alexandru
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (02)
  • [29] Exploring Effects of Magnetic Nanowire Arrangements and Imperfections on First-Order Reversal Curve Diagrams
    Kouhpanji, Mohammad Reza Zamani
    Stadler, Bethanie
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (02)
  • [30] Magnetic unmixing of first-order reversal curve diagrams using principal component analysis
    Lascu, Ioan
    Harrison, Richard J.
    Li, Yuting
    Muraszko, Joy R.
    Channell, James E. T.
    Piotrowski, Alexander M.
    Hodell, David A.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2015, 16 (09): : 2900 - 2915