Auto-Weighted Incomplete Multi-View Clustering

被引:5
|
作者
Deng, Wanyu [1 ]
Liu, Lixia [1 ]
Li, Jianqiang [1 ]
Lin, Yijun [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian 710121, Peoples R China
关键词
Clustering methods; Weight measurement; Linear programming; Web pages; Licenses; Laplace equations; Indexes; Adaptive weighting strategy; affinity matrix; common representation; incomplete multi-view clustering; CANONICAL CORRELATION-ANALYSIS;
D O I
10.1109/ACCESS.2020.3012500
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, multi-view clustering has attracted more and more attention, which provides a way to partition multi-view data into their corresponding clusters. Previous studies assume that each data instance appears in all views. However, in real-world applications, it is common that each view may contain some missing data instances, resulting in incomplete multi-view data. To address the incomplete multi-view clustering problem, we will propose an auto-weighted incomplete multi-view clustering method in this paper, which learns a common representation of the instances and an affinity matrix of the learned representation simultaneously in a unified framework. Learning the affinity matrix of the representation guides to learn a more discriminative and compact consensus representation for clustering. Moreover, by considering the impact of the significance of different views, an adaptive weighting strategy is designed to measure the importance of each view. An efficient iterative algorithm is proposed to optimize the objective function. Experimental results on various real-world datasets show that the proposed method can improve the clustering performance in comparison with the state-of-the-art methods in most cases.
引用
收藏
页码:138752 / 138762
页数:11
相关论文
共 50 条
  • [21] Kernelized multi-view subspace clustering via auto-weighted graph learning
    Guang-Yu Zhang
    Xiao-Wei Chen
    Yu-Ren Zhou
    Chang-Dong Wang
    Dong Huang
    Xiao-Yu He
    Applied Intelligence, 2022, 52 : 716 - 731
  • [22] Kernelized multi-view subspace clustering via auto-weighted graph learning
    Zhang, Guang-Yu
    Chen, Xiao-Wei
    Zhou, Yu-Ren
    Wang, Chang-Dong
    Huang, Dong
    He, Xiao-Yu
    APPLIED INTELLIGENCE, 2022, 52 (01) : 716 - 731
  • [23] Auto-weighted Multi-view learning for Semi-Supervised graph clustering
    Liu, Songhua
    Ding, Caiying
    Jiang, Fei
    Wang, Yan
    Yin, Baoyong
    NEUROCOMPUTING, 2019, 362 : 19 - 32
  • [24] DISTRIBUTED MULTI-VIEW SUBSPACE CLUSTERING VIA AUTO-WEIGHTED SPECTRAL EMBEDDING
    Chang, Pei-Che
    Cheng, Cheng-Yuan
    Hong, Y-W Peter
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [25] Auto-Weighted Graph Regularization and Residual Compensation for Multi-view Subspace Clustering
    Wang, Qiaoping
    Chen, Xiaoyun
    Chen, Wenjian
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 3851 - 3871
  • [26] Auto-Weighted Graph Regularization and Residual Compensation for Multi-view Subspace Clustering
    Qiaoping Wang
    Xiaoyun Chen
    Wenjian Chen
    Neural Processing Letters, 2022, 54 : 3851 - 3871
  • [27] Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
    Zhuge, Wenzhang
    Hou, Chenping
    Jiao, Yuanyuan
    Yue, Jia
    Tao, Hong
    Yi, Dongyun
    PLOS ONE, 2017, 12 (05):
  • [28] Auto-weighted collective matrix factorization with graph dual regularization for multi-view clustering
    Liu, Mingyang
    Yang, Zuyuan
    Li, Lingjiang
    Li, Zhenni
    Xie, Shengli
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [29] Auto-weighted multi-view co-clustering via fast matrix factorization
    Nie, Feiping
    Shi, Shaojun
    Li, Xuelong
    PATTERN RECOGNITION, 2020, 102
  • [30] Auto-Weighted Multi-View Learning for Image Clustering and Semi-Supervised Classification
    Nie, Feiping
    Cai, Guohao
    Li, Jing
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1501 - 1511