Auto-Weighted Incomplete Multi-View Clustering

被引:5
|
作者
Deng, Wanyu [1 ]
Liu, Lixia [1 ]
Li, Jianqiang [1 ]
Lin, Yijun [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian 710121, Peoples R China
关键词
Clustering methods; Weight measurement; Linear programming; Web pages; Licenses; Laplace equations; Indexes; Adaptive weighting strategy; affinity matrix; common representation; incomplete multi-view clustering; CANONICAL CORRELATION-ANALYSIS;
D O I
10.1109/ACCESS.2020.3012500
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, multi-view clustering has attracted more and more attention, which provides a way to partition multi-view data into their corresponding clusters. Previous studies assume that each data instance appears in all views. However, in real-world applications, it is common that each view may contain some missing data instances, resulting in incomplete multi-view data. To address the incomplete multi-view clustering problem, we will propose an auto-weighted incomplete multi-view clustering method in this paper, which learns a common representation of the instances and an affinity matrix of the learned representation simultaneously in a unified framework. Learning the affinity matrix of the representation guides to learn a more discriminative and compact consensus representation for clustering. Moreover, by considering the impact of the significance of different views, an adaptive weighting strategy is designed to measure the importance of each view. An efficient iterative algorithm is proposed to optimize the objective function. Experimental results on various real-world datasets show that the proposed method can improve the clustering performance in comparison with the state-of-the-art methods in most cases.
引用
收藏
页码:138752 / 138762
页数:11
相关论文
共 50 条
  • [1] Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion
    Liang, Naiyao
    Yang, Zuyuan
    Xie, Shengli
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6504 - 6511
  • [2] Incomplete Multi-View Clustering With Reconstructed Views
    Yin, Jun
    Sun, Shiliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2671 - 2682
  • [3] Multi-View Spectral Clustering With Incomplete Graphs
    Zhuge, Wenzhang
    Luo, Tingjin
    Tao, Hong
    Hou, Chenping
    Yi, Dongyun
    IEEE ACCESS, 2020, 8 : 99820 - 99831
  • [4] Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
    Zhang, Pei
    Wang, Siwei
    Hu, Jingtao
    Cheng, Zhen
    Guo, Xifeng
    Zhu, En
    Cai, Zhiping
    SENSORS, 2020, 20 (20) : 1 - 18
  • [5] Adaptive Graph Completion Based Incomplete Multi-View Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    Wang, Junqian
    Fei, Lunke
    Zhang, Bob
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2493 - 2504
  • [6] Robust Tensor Recovery for Incomplete Multi-View Clustering
    Shen, Qiangqiang
    Xu, Tingting
    Liang, Yongsheng
    Chen, Yongyong
    He, Zhenyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3856 - 3870
  • [7] Incomplete multi-view clustering based on weighted sparse and low rank representation
    Liang Zhao
    Jie Zhang
    Tao Yang
    Zhikui Chen
    Applied Intelligence, 2022, 52 : 14822 - 14838
  • [8] Dual Completion Learning for Incomplete Multi-View Clustering
    Shen, Qiangqiang
    Zhang, Xuanqi
    Wang, Shuqin
    Li, Yuanman
    Liang, Yongsheng
    Chen, Yongyong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 455 - 467
  • [9] Incomplete multi-view clustering based on weighted sparse and low rank representation
    Zhao, Liang
    Zhang, Jie
    Yang, Tao
    Chen, Zhikui
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14822 - 14838
  • [10] Incomplete Multi-View Clustering With Complete View Guidance
    Chen, Zhikui
    Li, Yue
    Lou, Kai
    Zhao, Liang
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1247 - 1251