The chromatic thresholds of graphs

被引:21
|
作者
Allen, Peter [1 ]
Boettcher, Julia [1 ]
Griffiths, Simon [2 ]
Kohayakawa, Yoshiharu [1 ]
Morris, Robert [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
[2] IMPA, Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Chromatic threshold; Minimum degree; Graph colouring; TRIANGLE-FREE GRAPHS; REGULARITY; NUMBER; LEMMA;
D O I
10.1016/j.aim.2012.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic threshold delta(chi)(H) of a graph H is the infimum of d > 0 such that there exists C = C(H, d) for which every. H-free graph G with minimum degree at least d vertical bar G vertical bar satisfies chi(G) <= C. We prove that delta(chi)(H) epsilon {r-3/r-2, 2r-5/2r-3, r-2/r-1} for every graph H with chi(H) = r >= 3. We moreover characterise the graphs H with a given chromatic threshold, and thus determine S chi(H) for every graph H. This answers a question of Erdos and Simonovits [P. Erdos, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323-334], and confirms a conjecture of Luczak and Thomasse [Tomasz Luczak, Stephan Thomasse, Colouring dense graphs via VC-dimension, arXiv:1011.4310 (submitted for publication)]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:261 / 295
页数:35
相关论文
共 50 条
  • [41] On chromatic transversal domination in graphs
    Arumugam, S.
    Raja Chandrasekar, K.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 83 : 13 - 21
  • [42] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457
  • [43] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [44] On the chromatic equivalence class of graphs
    Chia, GL
    DISCRETE MATHEMATICS, 1998, 178 (1-3) : 15 - 23
  • [45] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [46] On the chromatic number of disk graphs
    Malesinska, E
    Piskorz, S
    Weissenfels, G
    NETWORKS, 1998, 32 (01) : 13 - 22
  • [47] THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS
    Lee, Jonghyeon
    Shin, Heesung
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (02): : 525 - 534
  • [48] Tabular graphs and chromatic sum
    Hajiabolhassan, H
    Mehrabadi, ML
    Tusserkani, R
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 11 - 22
  • [49] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 745 - 751
  • [50] On the injective chromatic number of graphs
    Hahn, G
    Kratochvíl, J
    Sirán, J
    Sotteau, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 179 - 192