The chromatic thresholds of graphs

被引:21
|
作者
Allen, Peter [1 ]
Boettcher, Julia [1 ]
Griffiths, Simon [2 ]
Kohayakawa, Yoshiharu [1 ]
Morris, Robert [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
[2] IMPA, Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Chromatic threshold; Minimum degree; Graph colouring; TRIANGLE-FREE GRAPHS; REGULARITY; NUMBER; LEMMA;
D O I
10.1016/j.aim.2012.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic threshold delta(chi)(H) of a graph H is the infimum of d > 0 such that there exists C = C(H, d) for which every. H-free graph G with minimum degree at least d vertical bar G vertical bar satisfies chi(G) <= C. We prove that delta(chi)(H) epsilon {r-3/r-2, 2r-5/2r-3, r-2/r-1} for every graph H with chi(H) = r >= 3. We moreover characterise the graphs H with a given chromatic threshold, and thus determine S chi(H) for every graph H. This answers a question of Erdos and Simonovits [P. Erdos, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323-334], and confirms a conjecture of Luczak and Thomasse [Tomasz Luczak, Stephan Thomasse, Colouring dense graphs via VC-dimension, arXiv:1011.4310 (submitted for publication)]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:261 / 295
页数:35
相关论文
共 50 条
  • [31] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [32] On incompactness for chromatic number of graphs
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 363 - 371
  • [33] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296
  • [34] The Robust Chromatic Number of Graphs
    Bacso, Gabor
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [35] CHROMATIC INDEX OF OUTERPLANAR GRAPHS
    FIORINI, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) : 35 - 38
  • [36] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122
  • [37] Hat chromatic number of graphs
    Bosek, Bartlomiej
    Dudek, Andrzej
    Farnik, Michal
    Grytczuk, Jaroslaw
    Mazur, Przemyslaw
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [38] CHROMATIC POLYNOMIALS AND THE STRUCTURE OF GRAPHS
    WHITEHEAD, EG
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 630 - 632
  • [39] On Indicated Chromatic Number of Graphs
    S. Francis Raj
    R. Pandiya Raj
    H. P. Patil
    Graphs and Combinatorics, 2017, 33 : 203 - 219
  • [40] ON THE CHROMATIC UNIQUENESS OF BIPARTITE GRAPHS
    SALZBERG, PM
    LOPEZ, MA
    GIUDICI, RE
    DISCRETE MATHEMATICS, 1986, 58 (03) : 285 - 294