The chromatic thresholds of graphs

被引:21
|
作者
Allen, Peter [1 ]
Boettcher, Julia [1 ]
Griffiths, Simon [2 ]
Kohayakawa, Yoshiharu [1 ]
Morris, Robert [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
[2] IMPA, Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Chromatic threshold; Minimum degree; Graph colouring; TRIANGLE-FREE GRAPHS; REGULARITY; NUMBER; LEMMA;
D O I
10.1016/j.aim.2012.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic threshold delta(chi)(H) of a graph H is the infimum of d > 0 such that there exists C = C(H, d) for which every. H-free graph G with minimum degree at least d vertical bar G vertical bar satisfies chi(G) <= C. We prove that delta(chi)(H) epsilon {r-3/r-2, 2r-5/2r-3, r-2/r-1} for every graph H with chi(H) = r >= 3. We moreover characterise the graphs H with a given chromatic threshold, and thus determine S chi(H) for every graph H. This answers a question of Erdos and Simonovits [P. Erdos, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323-334], and confirms a conjecture of Luczak and Thomasse [Tomasz Luczak, Stephan Thomasse, Colouring dense graphs via VC-dimension, arXiv:1011.4310 (submitted for publication)]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:261 / 295
页数:35
相关论文
共 50 条
  • [1] Chromatic Thresholds in Sparse Random Graphs
    Allen, Peter
    Bottcher, Julia
    Griffiths, Simon
    Kohayakawa, Yoshiharu
    Morris, Robert
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) : 215 - 236
  • [2] Chromatic Thresholds in Dense Random Graphs
    Allen, Peter
    Bottcher, Julia
    Griffiths, Simon
    Kohayakawa, Yoshiharu
    Morris, Robert
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) : 185 - 214
  • [3] On the Chromatic Thresholds of Hypergraphs
    Balogh, Jozsef
    Butterfield, Jane
    Hu, Ping
    Lenz, John
    Mubayi, Dhruv
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (02): : 172 - 212
  • [4] ON CHROMATIC GRAPHS
    SAUVE, L
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (02): : 107 - +
  • [5] DURATION THRESHOLDS FOR CHROMATIC STIMULI
    POKORNY, J
    BOWEN, RW
    LINDSEY, DT
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (10) : 1380 - 1380
  • [6] DURATION THRESHOLDS FOR CHROMATIC STIMULI
    POKORNY, J
    BOWEN, RW
    WILLIAMS, DT
    SMITH, VC
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (01) : 103 - 106
  • [7] ON CHROMATIC DURABLE GRAPHS
    LICK, DR
    WHITE, AT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 301 - &
  • [8] On the chromatic number of graphs
    Butenko, S
    Festa, P
    Pardalos, PM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (01) : 51 - 67
  • [9] On the Chromatic Number of Graphs
    S. Butenko
    P. Festa
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2001, 109 (1) : 69 - 83
  • [10] THE CHROMATIC CONNECTIVITY OF GRAPHS
    GODSIL, CD
    NOWAKOWSKI, R
    NESETRIL, J
    GRAPHS AND COMBINATORICS, 1988, 4 (03) : 229 - 233