Adaptively Weighted Large Margin Classifiers

被引:30
作者
Wu, Yichao [1 ]
Liu, Yufeng [2 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Univ N Carolina, Dept Stat & Operat Res, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Binary classification; Data adaptive learning; Multicategory classification; SVM; Weighted learning; SUPPORT VECTOR MACHINES;
D O I
10.1080/10618600.2012.680866
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Large margin classifiers have been shown to be very useful in many applications. The support vector machine is a canonical example of large margin classifiers. Despite their flexibility and ability in handling high-dimensional data, many large margin classifiers have serious drawbacks when the data are noisy, especially when there are outliers in the data. In this article, we propose a new weighted large margin classification technique. The Weights are chosen adaptively with data. The proposed classifiers are shown to be robust to outliers and thus are able to produce more accurate classification results.
引用
收藏
页码:416 / 432
页数:17
相关论文
共 18 条
  • [1] Christianini N., 2000, INTRO SUPPORT VECTOR, P189
  • [2] Dietterich T. G., 1995, Journal of Artificial Intelligence Research, V2, P263
  • [3] Hastie T., 2001, ELEMENTS STAT LEARNI
  • [4] Lin XW, 2000, ANN STAT, V28, P1570
  • [5] Liu YF, 2006, J AM STAT ASSOC, V101, P500, DOI 10.1198/016214505000000781
  • [6] Reinforced Multicategory Support Vector Machines
    Liu, Yufeng
    Yuan, Ming
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 901 - 919
  • [7] Distance-weighted discrimination
    Marron, J. S.
    Todd, Michael J.
    Ahn, Jeongyoun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1267 - 1271
  • [8] Functional modelling and classification of longitudinal data
    Müller, HG
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) : 223 - 240
  • [9] Scholkopf B, 2002, Encyclopedia of Biostatistics
  • [10] On ψ-learning
    Shen, XT
    Tseng, GC
    Zhang, XG
    Wong, WH
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) : 724 - 734