Partitioning Power Grids via Nonlinear Koopman Mode Analysis

被引:0
|
作者
Raak, Fredrik [1 ,3 ]
Susuki, Yoshihiko [1 ,2 ]
Hikihara, Takashi [1 ]
Chamorro, Harold R. [3 ]
Ghandhari, Mehrdad [3 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] JST CREST, Tokyo 1020076, Japan
[3] Royal Inst Technol KTH, Dept Elect Power Syst, SE-10044 Stockholm, Sweden
来源
2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT) | 2014年
关键词
Controlled islanding; grid partitioning; power system monitoring; spectral graph theory; SPLITTING STRATEGIES; ALGORITHM; SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new method for partitioning power grids based on the nonlinear Koopman Mode Analysis (KMA). Grid partitioning is the fundamental problem in the controlled islanding strategy. The KMA is a new technique of nonlinear modal decomposition based on properties of the point spectrum of the so-called Koopman operator. The key idea in the proposed method is to determine a set of islanded sub-grids using KMA of data on voltage angle dynamics of every bus. The method is numerically investigated with the IEEE 118-bus test system. It is shown that the proposed method provides partitions on a multiple frequency scale as well as captures the intrinsic structural properties of a grid characterized by spectral graph theory.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Multi-Way Partitioning of Power Networks via Koopman Mode Analysis
    Raak, Fredrik
    Susuki, Yoshihiko
    Hikihara, Takashi
    IFAC PAPERSONLINE, 2015, 48 (30): : 421 - 426
  • [2] Data-Driven Partitioning of Power Networks Via Koopman Mode Analysis
    Raak, Fredrik
    Susuki, Yoshihiko
    Hikihara, Takashi
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (04) : 2799 - 2808
  • [3] Subspace dynamic mode decomposition for stochastic Koopman analysis
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Yairi, Takehisa
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [4] Nonlinear Dual-Mode Model Predictive Control using Koopman Eigenfunctions
    Krolicki, Alexander
    Tellez-Castro, Duvan
    Vaidya, Umesh
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3074 - 3079
  • [5] Dynamic Mode Decomposition with Reproducing Kernels for Koopman Spectral Analysis
    Kawahara, Yoshinobu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [6] De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
    Hemati, Maziar S.
    Rowley, Clarence W.
    Deem, Eric A.
    Cattafesta, Louis N.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2017, 31 (04) : 349 - 368
  • [7] Analysis of Fluid Flows via Spectral Properties of the Koopman Operator
    Mezic, Igor
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 45, 2013, 45 : 357 - 378
  • [8] Dynamic mode decomposition for Koopman spectral analysis of elementary cellular automata
    Taga, Keisuke
    Kato, Yuzuru
    Yamazaki, Yoshihiro
    Kawahara, Yoshinobu
    Nakao, Hiroya
    CHAOS, 2024, 34 (01)
  • [9] A Novel Method for Accelerating the Analysis of Nonlinear Behaviour of Power Grids using Normal Form Technique
    Ugwuanyi, Nnaemeka Sunday
    Kestelyn, Xavier
    Thomas, Olivier
    Marinescu, Bogdan
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [10] Vulnerability Analysis of Power Grids With Line Switching
    Zhao, Long
    Zeng, Bo
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) : 2727 - 2736