Electrochemical Model Based Observer Design for a Lithium-Ion Battery

被引:231
作者
Klein, Reinhardt [1 ,2 ]
Chaturvedi, Nalin A. [1 ]
Christensen, Jake [1 ]
Ahmed, Jasim [1 ]
Findeisen, Rolf [2 ]
Kojic, Aleksandar [1 ]
机构
[1] Robert Bosch LLC, Res & Technol Ctr, Palo Alto, CA 94304 USA
[2] Otto Von Guericke Univ, Inst Automat Engn, D-39106 Magdeburg, Germany
关键词
Battery management systems; electrochemical model; lithium ion batteries; PDE observer design; MANAGEMENT-SYSTEMS; CHARGE; STATE;
D O I
10.1109/TCST.2011.2178604
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Batteries are the key technology for enabling further mobile electrification and energy storage. Accurate prediction of the state of the battery is needed not only for safety reasons, but also for better utilization of the battery. In this work we present a state estimation strategy for a detailed electrochemical model of a lithium-ion battery. The benefit of using a detailed model is the additional information obtained about the battery, such as accurate estimates of the internal temperature, the state of charge within the individual electrodes, overpotential, concentration and current distribution across the electrodes, which can be utilized for safety and optimal operation. Based on physical insight, we propose an output error injection observer based on a reduced set of partial differential-algebraic equations. This reduced model has a less complex structure, while it still captures the main dynamics. The observer is extensively studied in simulations and validated in experiments for actual electric-vehicle drive cycles. Experimental results show the observer to be robust with respect to unmodeled dynamics as well as to noisy and biased voltage and current measurements. The available state estimates can be used for monitoring purposes or incorporated into a model based controller to improve the performance of the battery while guaranteeing safe operation.
引用
收藏
页码:289 / 301
页数:13
相关论文
共 20 条
[1]   Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries [J].
Albertus, Paul ;
Christensen, Jake ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) :A606-A618
[2]   Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes [J].
Arora, P ;
Doyle, M ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3543-3553
[3]  
Chaturvedi NA, 2010, P AMER CONTR CONF, P1997
[4]  
Chaturvedi NA, 2010, IEEE CONTR SYST MAG, V30, P49, DOI 10.1109/MCS.2010.936293
[5]   Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter [J].
Di Domenico, Domenico ;
Stefanopoulou, Anna ;
Fiengo, Giovanni .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (06)
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[8]  
Klein R, 2010, P AMER CONTR CONF, P6618
[9]  
Krstic M, 2008, ADV DES CONTROL, P1
[10]   Intelligent control battery equalization for series connected lithium-ion battery strings [J].
Lee, YS ;
Cheng, MW .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2005, 52 (05) :1297-1307