Invariant densities for dynamical systems with random switching

被引:59
作者
Bakhtin, Yuri [1 ]
Hurth, Tobias [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0951-7715/25/10/2937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonautonomous ordinary differential equation on a smooth manifold, with right-hand side that randomly switches between the elements of a finite family of smooth vector fields. For the resulting random dynamical system, we show that Hormander type hypoellipticity conditions are sufficient for uniqueness and absolute continuity of an invariant measure.
引用
收藏
页码:2937 / 2952
页数:16
相关论文
共 16 条
[1]   On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations [J].
Agrachev, A. ;
Kuksin, S. ;
Sarychev, A. ;
Shirikyan, A. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (04) :399-415
[2]  
[Anonymous], 2006, GRADUATE STUDIES MAT
[3]  
[Anonymous], 1998, TRANSLATIONS MATH MO
[4]  
Barenblatt GI, 1983, INTERACTION MECH MAT
[5]  
Bass R F., 1998, PROB APPL S
[6]  
Bell DR, 2006, The Malliavin calculus
[7]  
Benaim M., 2012, ARXIV12044143
[8]  
Chow W-L., 1939, Math. Ann, V117, P98, DOI [10.1007/BF01450011, DOI 10.1007/BF01450011]
[9]  
Hairer M, 2006, LECT SERIES U WARWIC
[10]  
Hirsch MW., 2012, Differential Equations, Dynamical Systems, and an Introduction to Chaos, DOI DOI 10.1016/C2009-0-61160-0